NVIDIA Unveils 1.3 Teraflop GPU for Supercomputing

By Michael Feldman

November 12, 2012

The battle of teraflop accelerators began today as NVIDIA launched a new family of supercomputing GPUs based on the Kepler architecture. The Tesla K20 and the K20X represent the company’s latest and greatest and are intended to keep NVIDIA’s successful HPC accelerator franchise out in front of the competition. The chipmaker announced the new hardware as the 2012 Supercomputing Conference, in Salt Lake City, got underway.

NVIDIA has been the dominant provider of HPC accelerators for the world’s supercomputers. But with the imminent release of Intel’s Xeon Phi, NVIDIA will have its first serious competitor since it started shipping Tesla products in 2006. AMD is also announcing it’s new teraflop-plus FirePro offering for servers today. For now though, the new K20 and K20X look like unbeatable, at least from a pure FLOPS per chip perspective.

The top-of-the-line K20X offers 1.31 peak teraflops of double precision floating point performance and 3.95 teraflops single precision. That is twice the double precision performance and three times the single precision performance of the fastest Fermi-generation Tesla, the M2090. The chip itself encapsulates 2,688 cores and runs and runs at 732 MHz. Maximum power draw is 235 watts, which is about 10 watts above a standard Fermi part. Memory bandwidth on the K20X has been kicked up by about 40 percent compared to the M2090 — from 177 to 250 GB/second, although memory capacity remains steady at 6 GB.

It is the K20X that powers the new 27-petaflop (peak) Titan machine at Oak Ridge National Laboratory. And thanks to much improved Linpack yield on the new GPUs, Titan has also become the number one system on the TOP500, with a mark of 17.6 petaflops, which knocks Lawrence Livermore Lab’s 16.3-petaflop Sequoia into second place.

While the K20X is the go-to chip for top performance, the base model Tesla K20 is only slightly less powerful at 1.17 teraflops double precision and 3.52 teraflop single precision. The lesser performance is due to a smaller core count (2,496) and slightly slower GPU clock (706 MHz). The power draw is correspondingly lower, as well, at 225 watts. Memory capacity has been shaved to 5 GB, along with a somewhat reduced bandwidth — 208 GB/second. The K20 is not aimed at any particular demographic; it’s just a less performant K20X for situations where max compute and memory performance are not needed.

Note that single precision FP performance with both K20s is three times that of its double precision values, rather than two times as it was on the Fermi devices. This was an explicit design choice by NVIDIA. The rationale is that using single precision for much of the computation and double precision, only when that extra level of accuracy is required, will boost application performance, as well as energy efficiency, on codes that can take advantage of mixed precision computing.

Although the increase in raw memory performance is modest relative to the compute performance, memory bandwidth with error correction (ECC) turned on has been improved. Usually ECC incurs a significant overhead, but the NVIDIA engineers have managed to reduced it substantially. According to Sumit Gupta, NVIDIA’s GM of the Tesla business, typical applications will now see just a 6 to 8 percent penalty with ECC enabled, which is about half of what it was on the Fermi-generation devices.

Gupta says it’s not just raw speed that has been kicked up. Thanks to a variety of microarchitectural optimizations, execution performance of real software will be much improved as well. For example, the K20X can deliver 1.22 teraflops on DGEMM, a double precision matrix multiplication routine used across a number of science applications. That’s three times faster than the previous generation Fermi chip — remember for peak double precision, the K20X was only twice that of its predecessor.

Likewise, Linpack efficiency has been improved, from 61 percent of peak in Fermi, to 76 percent in the K20X. A single dual-K20X server with a couple of host Xeons for company deliver 2.25 Linpack teraflops. In the past, GPUs-accelerated machines have suffered from poor Linpack yield — more in the range of 50 to 60 percent..

“If Fermi was a big leap forward, Kepler is going to be twice as big in terms of revolutionizing high performance computing,” Gupta told HPCwire.

More to the point is real-world application performance, which Gupta says is going to get a big boost for users who upgrade to the new Kepler hardware. Compared against a standard dual-socket Xeon server, the same box equipped with a couple of matching K20X devices will enjoy a significant speed-ups on a variety of science apps, including MATLAB FFT and Chroma (18 times faster), geodynamics code SPECFEM3D (10 time faster) and molecular dynamics code AMBER (8 times faster).

Best all of is WL-LSMS, a material science code that gets more than a 32X boost with K20X acceleration. WL-LSMS captured the Gordon Bell prize a year ago at SC11, running at 3 petaflops on the Fujitsu’s K computer. Reworked for GPUs on the new Titan machine at ORNL, the same code hits 10-plus petaflops.

On the performance per watt front, the new Kepler hardware looks to be just as impressive. In fact, since the new chips now yield two or three times the performance in the same power envelope as the previous generation GPUs, the systems that house them will likely gravitate to the top of the Green500 list. After some preliminary tests, a small K20X-equipped supercomputer was able to deliver 2,142 megaflops per watt on a Linpack run. That would beat out the Green500’s top-ranked IBM Blue Gene/Q machine, which delivers just north of 2100 megaflops/watt.

The K20s are shipping now and sales are apparently off to a fast start. In the last 30 days, NVIDIA says its has shipped 30 petaflops worth of the K20 gear (24 petaflops of which are installed in Titan). That’s more than the aggregate capacity of the entire TOP500 list a year ago.

With Intel’s Knights Corner products and AMD’s FirePro S10000 cards also being launched today, the new K20 offerings will have some company in the teraflop-plus HPC accelerator category. To get an idea those products that stack up against NVIDIA’s finest, check out the accompanying stories today in HPCwire.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This