NVIDIA Unveils 1.3 Teraflop GPU for Supercomputing

By Michael Feldman

November 12, 2012

The battle of teraflop accelerators began today as NVIDIA launched a new family of supercomputing GPUs based on the Kepler architecture. The Tesla K20 and the K20X represent the company’s latest and greatest and are intended to keep NVIDIA’s successful HPC accelerator franchise out in front of the competition. The chipmaker announced the new hardware as the 2012 Supercomputing Conference, in Salt Lake City, got underway.

NVIDIA has been the dominant provider of HPC accelerators for the world’s supercomputers. But with the imminent release of Intel’s Xeon Phi, NVIDIA will have its first serious competitor since it started shipping Tesla products in 2006. AMD is also announcing it’s new teraflop-plus FirePro offering for servers today. For now though, the new K20 and K20X look like unbeatable, at least from a pure FLOPS per chip perspective.

The top-of-the-line K20X offers 1.31 peak teraflops of double precision floating point performance and 3.95 teraflops single precision. That is twice the double precision performance and three times the single precision performance of the fastest Fermi-generation Tesla, the M2090. The chip itself encapsulates 2,688 cores and runs and runs at 732 MHz. Maximum power draw is 235 watts, which is about 10 watts above a standard Fermi part. Memory bandwidth on the K20X has been kicked up by about 40 percent compared to the M2090 — from 177 to 250 GB/second, although memory capacity remains steady at 6 GB.

It is the K20X that powers the new 27-petaflop (peak) Titan machine at Oak Ridge National Laboratory. And thanks to much improved Linpack yield on the new GPUs, Titan has also become the number one system on the TOP500, with a mark of 17.6 petaflops, which knocks Lawrence Livermore Lab’s 16.3-petaflop Sequoia into second place.

While the K20X is the go-to chip for top performance, the base model Tesla K20 is only slightly less powerful at 1.17 teraflops double precision and 3.52 teraflop single precision. The lesser performance is due to a smaller core count (2,496) and slightly slower GPU clock (706 MHz). The power draw is correspondingly lower, as well, at 225 watts. Memory capacity has been shaved to 5 GB, along with a somewhat reduced bandwidth — 208 GB/second. The K20 is not aimed at any particular demographic; it’s just a less performant K20X for situations where max compute and memory performance are not needed.

Note that single precision FP performance with both K20s is three times that of its double precision values, rather than two times as it was on the Fermi devices. This was an explicit design choice by NVIDIA. The rationale is that using single precision for much of the computation and double precision, only when that extra level of accuracy is required, will boost application performance, as well as energy efficiency, on codes that can take advantage of mixed precision computing.

Although the increase in raw memory performance is modest relative to the compute performance, memory bandwidth with error correction (ECC) turned on has been improved. Usually ECC incurs a significant overhead, but the NVIDIA engineers have managed to reduced it substantially. According to Sumit Gupta, NVIDIA’s GM of the Tesla business, typical applications will now see just a 6 to 8 percent penalty with ECC enabled, which is about half of what it was on the Fermi-generation devices.

Gupta says it’s not just raw speed that has been kicked up. Thanks to a variety of microarchitectural optimizations, execution performance of real software will be much improved as well. For example, the K20X can deliver 1.22 teraflops on DGEMM, a double precision matrix multiplication routine used across a number of science applications. That’s three times faster than the previous generation Fermi chip — remember for peak double precision, the K20X was only twice that of its predecessor.

Likewise, Linpack efficiency has been improved, from 61 percent of peak in Fermi, to 76 percent in the K20X. A single dual-K20X server with a couple of host Xeons for company deliver 2.25 Linpack teraflops. In the past, GPUs-accelerated machines have suffered from poor Linpack yield — more in the range of 50 to 60 percent..

“If Fermi was a big leap forward, Kepler is going to be twice as big in terms of revolutionizing high performance computing,” Gupta told HPCwire.

More to the point is real-world application performance, which Gupta says is going to get a big boost for users who upgrade to the new Kepler hardware. Compared against a standard dual-socket Xeon server, the same box equipped with a couple of matching K20X devices will enjoy a significant speed-ups on a variety of science apps, including MATLAB FFT and Chroma (18 times faster), geodynamics code SPECFEM3D (10 time faster) and molecular dynamics code AMBER (8 times faster).

Best all of is WL-LSMS, a material science code that gets more than a 32X boost with K20X acceleration. WL-LSMS captured the Gordon Bell prize a year ago at SC11, running at 3 petaflops on the Fujitsu’s K computer. Reworked for GPUs on the new Titan machine at ORNL, the same code hits 10-plus petaflops.

On the performance per watt front, the new Kepler hardware looks to be just as impressive. In fact, since the new chips now yield two or three times the performance in the same power envelope as the previous generation GPUs, the systems that house them will likely gravitate to the top of the Green500 list. After some preliminary tests, a small K20X-equipped supercomputer was able to deliver 2,142 megaflops per watt on a Linpack run. That would beat out the Green500’s top-ranked IBM Blue Gene/Q machine, which delivers just north of 2100 megaflops/watt.

The K20s are shipping now and sales are apparently off to a fast start. In the last 30 days, NVIDIA says its has shipped 30 petaflops worth of the K20 gear (24 petaflops of which are installed in Titan). That’s more than the aggregate capacity of the entire TOP500 list a year ago.

With Intel’s Knights Corner products and AMD’s FirePro S10000 cards also being launched today, the new K20 offerings will have some company in the teraflop-plus HPC accelerator category. To get an idea those products that stack up against NVIDIA’s finest, check out the accompanying stories today in HPCwire.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This