NVIDIA Unveils 1.3 Teraflop GPU for Supercomputing

By Michael Feldman

November 12, 2012

The battle of teraflop accelerators began today as NVIDIA launched a new family of supercomputing GPUs based on the Kepler architecture. The Tesla K20 and the K20X represent the company’s latest and greatest and are intended to keep NVIDIA’s successful HPC accelerator franchise out in front of the competition. The chipmaker announced the new hardware as the 2012 Supercomputing Conference, in Salt Lake City, got underway.

NVIDIA has been the dominant provider of HPC accelerators for the world’s supercomputers. But with the imminent release of Intel’s Xeon Phi, NVIDIA will have its first serious competitor since it started shipping Tesla products in 2006. AMD is also announcing it’s new teraflop-plus FirePro offering for servers today. For now though, the new K20 and K20X look like unbeatable, at least from a pure FLOPS per chip perspective.

The top-of-the-line K20X offers 1.31 peak teraflops of double precision floating point performance and 3.95 teraflops single precision. That is twice the double precision performance and three times the single precision performance of the fastest Fermi-generation Tesla, the M2090. The chip itself encapsulates 2,688 cores and runs and runs at 732 MHz. Maximum power draw is 235 watts, which is about 10 watts above a standard Fermi part. Memory bandwidth on the K20X has been kicked up by about 40 percent compared to the M2090 — from 177 to 250 GB/second, although memory capacity remains steady at 6 GB.

It is the K20X that powers the new 27-petaflop (peak) Titan machine at Oak Ridge National Laboratory. And thanks to much improved Linpack yield on the new GPUs, Titan has also become the number one system on the TOP500, with a mark of 17.6 petaflops, which knocks Lawrence Livermore Lab’s 16.3-petaflop Sequoia into second place.

While the K20X is the go-to chip for top performance, the base model Tesla K20 is only slightly less powerful at 1.17 teraflops double precision and 3.52 teraflop single precision. The lesser performance is due to a smaller core count (2,496) and slightly slower GPU clock (706 MHz). The power draw is correspondingly lower, as well, at 225 watts. Memory capacity has been shaved to 5 GB, along with a somewhat reduced bandwidth — 208 GB/second. The K20 is not aimed at any particular demographic; it’s just a less performant K20X for situations where max compute and memory performance are not needed.

Note that single precision FP performance with both K20s is three times that of its double precision values, rather than two times as it was on the Fermi devices. This was an explicit design choice by NVIDIA. The rationale is that using single precision for much of the computation and double precision, only when that extra level of accuracy is required, will boost application performance, as well as energy efficiency, on codes that can take advantage of mixed precision computing.

Although the increase in raw memory performance is modest relative to the compute performance, memory bandwidth with error correction (ECC) turned on has been improved. Usually ECC incurs a significant overhead, but the NVIDIA engineers have managed to reduced it substantially. According to Sumit Gupta, NVIDIA’s GM of the Tesla business, typical applications will now see just a 6 to 8 percent penalty with ECC enabled, which is about half of what it was on the Fermi-generation devices.

Gupta says it’s not just raw speed that has been kicked up. Thanks to a variety of microarchitectural optimizations, execution performance of real software will be much improved as well. For example, the K20X can deliver 1.22 teraflops on DGEMM, a double precision matrix multiplication routine used across a number of science applications. That’s three times faster than the previous generation Fermi chip — remember for peak double precision, the K20X was only twice that of its predecessor.

Likewise, Linpack efficiency has been improved, from 61 percent of peak in Fermi, to 76 percent in the K20X. A single dual-K20X server with a couple of host Xeons for company deliver 2.25 Linpack teraflops. In the past, GPUs-accelerated machines have suffered from poor Linpack yield — more in the range of 50 to 60 percent..

“If Fermi was a big leap forward, Kepler is going to be twice as big in terms of revolutionizing high performance computing,” Gupta told HPCwire.

More to the point is real-world application performance, which Gupta says is going to get a big boost for users who upgrade to the new Kepler hardware. Compared against a standard dual-socket Xeon server, the same box equipped with a couple of matching K20X devices will enjoy a significant speed-ups on a variety of science apps, including MATLAB FFT and Chroma (18 times faster), geodynamics code SPECFEM3D (10 time faster) and molecular dynamics code AMBER (8 times faster).

Best all of is WL-LSMS, a material science code that gets more than a 32X boost with K20X acceleration. WL-LSMS captured the Gordon Bell prize a year ago at SC11, running at 3 petaflops on the Fujitsu’s K computer. Reworked for GPUs on the new Titan machine at ORNL, the same code hits 10-plus petaflops.

On the performance per watt front, the new Kepler hardware looks to be just as impressive. In fact, since the new chips now yield two or three times the performance in the same power envelope as the previous generation GPUs, the systems that house them will likely gravitate to the top of the Green500 list. After some preliminary tests, a small K20X-equipped supercomputer was able to deliver 2,142 megaflops per watt on a Linpack run. That would beat out the Green500’s top-ranked IBM Blue Gene/Q machine, which delivers just north of 2100 megaflops/watt.

The K20s are shipping now and sales are apparently off to a fast start. In the last 30 days, NVIDIA says its has shipped 30 petaflops worth of the K20 gear (24 petaflops of which are installed in Titan). That’s more than the aggregate capacity of the entire TOP500 list a year ago.

With Intel’s Knights Corner products and AMD’s FirePro S10000 cards also being launched today, the new K20 offerings will have some company in the teraflop-plus HPC accelerator category. To get an idea those products that stack up against NVIDIA’s finest, check out the accompanying stories today in HPCwire.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the General Chair of SC19 -- is an ACM Distinguished Scientist. Read more…

By HPCwire Editorial Team

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

AI and Enterprise Datacenters Boost HPC Server Revenues Past Expectations – Hyperion

April 9, 2019

Building on the big year of 2017 and spurred in part by the convergence of AI and HPC, global revenue for high performance servers jumped 15.6 percent last year Read more…

By Doug Black

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This