NVIDIA Unveils 1.3 Teraflop GPU for Supercomputing

By Michael Feldman

November 12, 2012

The battle of teraflop accelerators began today as NVIDIA launched a new family of supercomputing GPUs based on the Kepler architecture. The Tesla K20 and the K20X represent the company’s latest and greatest and are intended to keep NVIDIA’s successful HPC accelerator franchise out in front of the competition. The chipmaker announced the new hardware as the 2012 Supercomputing Conference, in Salt Lake City, got underway.

NVIDIA has been the dominant provider of HPC accelerators for the world’s supercomputers. But with the imminent release of Intel’s Xeon Phi, NVIDIA will have its first serious competitor since it started shipping Tesla products in 2006. AMD is also announcing it’s new teraflop-plus FirePro offering for servers today. For now though, the new K20 and K20X look like unbeatable, at least from a pure FLOPS per chip perspective.

The top-of-the-line K20X offers 1.31 peak teraflops of double precision floating point performance and 3.95 teraflops single precision. That is twice the double precision performance and three times the single precision performance of the fastest Fermi-generation Tesla, the M2090. The chip itself encapsulates 2,688 cores and runs and runs at 732 MHz. Maximum power draw is 235 watts, which is about 10 watts above a standard Fermi part. Memory bandwidth on the K20X has been kicked up by about 40 percent compared to the M2090 — from 177 to 250 GB/second, although memory capacity remains steady at 6 GB.

It is the K20X that powers the new 27-petaflop (peak) Titan machine at Oak Ridge National Laboratory. And thanks to much improved Linpack yield on the new GPUs, Titan has also become the number one system on the TOP500, with a mark of 17.6 petaflops, which knocks Lawrence Livermore Lab’s 16.3-petaflop Sequoia into second place.

While the K20X is the go-to chip for top performance, the base model Tesla K20 is only slightly less powerful at 1.17 teraflops double precision and 3.52 teraflop single precision. The lesser performance is due to a smaller core count (2,496) and slightly slower GPU clock (706 MHz). The power draw is correspondingly lower, as well, at 225 watts. Memory capacity has been shaved to 5 GB, along with a somewhat reduced bandwidth — 208 GB/second. The K20 is not aimed at any particular demographic; it’s just a less performant K20X for situations where max compute and memory performance are not needed.

Note that single precision FP performance with both K20s is three times that of its double precision values, rather than two times as it was on the Fermi devices. This was an explicit design choice by NVIDIA. The rationale is that using single precision for much of the computation and double precision, only when that extra level of accuracy is required, will boost application performance, as well as energy efficiency, on codes that can take advantage of mixed precision computing.

Although the increase in raw memory performance is modest relative to the compute performance, memory bandwidth with error correction (ECC) turned on has been improved. Usually ECC incurs a significant overhead, but the NVIDIA engineers have managed to reduced it substantially. According to Sumit Gupta, NVIDIA’s GM of the Tesla business, typical applications will now see just a 6 to 8 percent penalty with ECC enabled, which is about half of what it was on the Fermi-generation devices.

Gupta says it’s not just raw speed that has been kicked up. Thanks to a variety of microarchitectural optimizations, execution performance of real software will be much improved as well. For example, the K20X can deliver 1.22 teraflops on DGEMM, a double precision matrix multiplication routine used across a number of science applications. That’s three times faster than the previous generation Fermi chip — remember for peak double precision, the K20X was only twice that of its predecessor.

Likewise, Linpack efficiency has been improved, from 61 percent of peak in Fermi, to 76 percent in the K20X. A single dual-K20X server with a couple of host Xeons for company deliver 2.25 Linpack teraflops. In the past, GPUs-accelerated machines have suffered from poor Linpack yield — more in the range of 50 to 60 percent..

“If Fermi was a big leap forward, Kepler is going to be twice as big in terms of revolutionizing high performance computing,” Gupta told HPCwire.

More to the point is real-world application performance, which Gupta says is going to get a big boost for users who upgrade to the new Kepler hardware. Compared against a standard dual-socket Xeon server, the same box equipped with a couple of matching K20X devices will enjoy a significant speed-ups on a variety of science apps, including MATLAB FFT and Chroma (18 times faster), geodynamics code SPECFEM3D (10 time faster) and molecular dynamics code AMBER (8 times faster).

Best all of is WL-LSMS, a material science code that gets more than a 32X boost with K20X acceleration. WL-LSMS captured the Gordon Bell prize a year ago at SC11, running at 3 petaflops on the Fujitsu’s K computer. Reworked for GPUs on the new Titan machine at ORNL, the same code hits 10-plus petaflops.

On the performance per watt front, the new Kepler hardware looks to be just as impressive. In fact, since the new chips now yield two or three times the performance in the same power envelope as the previous generation GPUs, the systems that house them will likely gravitate to the top of the Green500 list. After some preliminary tests, a small K20X-equipped supercomputer was able to deliver 2,142 megaflops per watt on a Linpack run. That would beat out the Green500’s top-ranked IBM Blue Gene/Q machine, which delivers just north of 2100 megaflops/watt.

The K20s are shipping now and sales are apparently off to a fast start. In the last 30 days, NVIDIA says its has shipped 30 petaflops worth of the K20 gear (24 petaflops of which are installed in Titan). That’s more than the aggregate capacity of the entire TOP500 list a year ago.

With Intel’s Knights Corner products and AMD’s FirePro S10000 cards also being launched today, the new K20 offerings will have some company in the teraflop-plus HPC accelerator category. To get an idea those products that stack up against NVIDIA’s finest, check out the accompanying stories today in HPCwire.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

2022 Road Trip: NASA Ames Takes Off

November 25, 2022

I left Dallas very early Friday morning after the conclusion of SC22. I had a race with the devil to get from Dallas to Mountain View, Calif., by Sunday. According to Google Maps, this 1,957 mile jaunt would be the longe Read more…

2022 Road Trip: Sandia Brain Trust Sounds Off

November 24, 2022

As the 2022 Great American Supercomputing Road Trip carries on, it’s Sandia’s turn. It was a bright sunny day when I rolled into Albuquerque after a high-speed run from Los Alamos National Laboratory. My interview su Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the car on November 3rd and headed towards SC22 in Dallas, stoppi Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built on technology developed at Harvard and MIT, QuEra, is one of Read more…

AWS Solution Channel

Shutterstock 1648511269

Avoid overspending with AWS Batch using a serverless cost guardian monitoring architecture

Pay-as-you-go resources are a compelling but daunting concept for budget conscious research customers. Uncertainty of cloud costs is a barrier-to-entry for most, and having near real-time cost visibility is critical. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected “how supercomputing is continuously changing the world by Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected Read more…

Quantum – Are We There (or Close) Yet? No, Says the Panel

November 19, 2022

For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

Gordon Bell Special Prize Goes to LLM-Based Covid Variant Prediction

November 17, 2022

For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Spec Read more…

2022 Gordon Bell Prize Goes to Plasma Accelerator Research

November 17, 2022

At the awards ceremony at SC22 in Dallas today, ACM awarded the 2022 ACM Gordon Bell Prize to a team of researchers who used four major supercomputers – inclu Read more…

Gordon Bell Nominee Used LLMs, HPC, Cerebras CS-2 to Predict Covid Variants

November 17, 2022

Large language models (LLMs) have taken the tech world by storm over the past couple of years, dominating headlines with their ability to generate convincing hu Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Leading Solution Providers

Contributors

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire