NVIDIA Unveils 1.3 Teraflop GPU for Supercomputing

By Michael Feldman

November 12, 2012

The battle of teraflop accelerators began today as NVIDIA launched a new family of supercomputing GPUs based on the Kepler architecture. The Tesla K20 and the K20X represent the company’s latest and greatest and are intended to keep NVIDIA’s successful HPC accelerator franchise out in front of the competition. The chipmaker announced the new hardware as the 2012 Supercomputing Conference, in Salt Lake City, got underway.

NVIDIA has been the dominant provider of HPC accelerators for the world’s supercomputers. But with the imminent release of Intel’s Xeon Phi, NVIDIA will have its first serious competitor since it started shipping Tesla products in 2006. AMD is also announcing it’s new teraflop-plus FirePro offering for servers today. For now though, the new K20 and K20X look like unbeatable, at least from a pure FLOPS per chip perspective.

The top-of-the-line K20X offers 1.31 peak teraflops of double precision floating point performance and 3.95 teraflops single precision. That is twice the double precision performance and three times the single precision performance of the fastest Fermi-generation Tesla, the M2090. The chip itself encapsulates 2,688 cores and runs and runs at 732 MHz. Maximum power draw is 235 watts, which is about 10 watts above a standard Fermi part. Memory bandwidth on the K20X has been kicked up by about 40 percent compared to the M2090 — from 177 to 250 GB/second, although memory capacity remains steady at 6 GB.

It is the K20X that powers the new 27-petaflop (peak) Titan machine at Oak Ridge National Laboratory. And thanks to much improved Linpack yield on the new GPUs, Titan has also become the number one system on the TOP500, with a mark of 17.6 petaflops, which knocks Lawrence Livermore Lab’s 16.3-petaflop Sequoia into second place.

While the K20X is the go-to chip for top performance, the base model Tesla K20 is only slightly less powerful at 1.17 teraflops double precision and 3.52 teraflop single precision. The lesser performance is due to a smaller core count (2,496) and slightly slower GPU clock (706 MHz). The power draw is correspondingly lower, as well, at 225 watts. Memory capacity has been shaved to 5 GB, along with a somewhat reduced bandwidth — 208 GB/second. The K20 is not aimed at any particular demographic; it’s just a less performant K20X for situations where max compute and memory performance are not needed.

Note that single precision FP performance with both K20s is three times that of its double precision values, rather than two times as it was on the Fermi devices. This was an explicit design choice by NVIDIA. The rationale is that using single precision for much of the computation and double precision, only when that extra level of accuracy is required, will boost application performance, as well as energy efficiency, on codes that can take advantage of mixed precision computing.

Although the increase in raw memory performance is modest relative to the compute performance, memory bandwidth with error correction (ECC) turned on has been improved. Usually ECC incurs a significant overhead, but the NVIDIA engineers have managed to reduced it substantially. According to Sumit Gupta, NVIDIA’s GM of the Tesla business, typical applications will now see just a 6 to 8 percent penalty with ECC enabled, which is about half of what it was on the Fermi-generation devices.

Gupta says it’s not just raw speed that has been kicked up. Thanks to a variety of microarchitectural optimizations, execution performance of real software will be much improved as well. For example, the K20X can deliver 1.22 teraflops on DGEMM, a double precision matrix multiplication routine used across a number of science applications. That’s three times faster than the previous generation Fermi chip — remember for peak double precision, the K20X was only twice that of its predecessor.

Likewise, Linpack efficiency has been improved, from 61 percent of peak in Fermi, to 76 percent in the K20X. A single dual-K20X server with a couple of host Xeons for company deliver 2.25 Linpack teraflops. In the past, GPUs-accelerated machines have suffered from poor Linpack yield — more in the range of 50 to 60 percent..

“If Fermi was a big leap forward, Kepler is going to be twice as big in terms of revolutionizing high performance computing,” Gupta told HPCwire.

More to the point is real-world application performance, which Gupta says is going to get a big boost for users who upgrade to the new Kepler hardware. Compared against a standard dual-socket Xeon server, the same box equipped with a couple of matching K20X devices will enjoy a significant speed-ups on a variety of science apps, including MATLAB FFT and Chroma (18 times faster), geodynamics code SPECFEM3D (10 time faster) and molecular dynamics code AMBER (8 times faster).

Best all of is WL-LSMS, a material science code that gets more than a 32X boost with K20X acceleration. WL-LSMS captured the Gordon Bell prize a year ago at SC11, running at 3 petaflops on the Fujitsu’s K computer. Reworked for GPUs on the new Titan machine at ORNL, the same code hits 10-plus petaflops.

On the performance per watt front, the new Kepler hardware looks to be just as impressive. In fact, since the new chips now yield two or three times the performance in the same power envelope as the previous generation GPUs, the systems that house them will likely gravitate to the top of the Green500 list. After some preliminary tests, a small K20X-equipped supercomputer was able to deliver 2,142 megaflops per watt on a Linpack run. That would beat out the Green500’s top-ranked IBM Blue Gene/Q machine, which delivers just north of 2100 megaflops/watt.

The K20s are shipping now and sales are apparently off to a fast start. In the last 30 days, NVIDIA says its has shipped 30 petaflops worth of the K20 gear (24 petaflops of which are installed in Titan). That’s more than the aggregate capacity of the entire TOP500 list a year ago.

With Intel’s Knights Corner products and AMD’s FirePro S10000 cards also being launched today, the new K20 offerings will have some company in the teraflop-plus HPC accelerator category. To get an idea those products that stack up against NVIDIA’s finest, check out the accompanying stories today in HPCwire.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Amazon’s Plunge into Server Chips a Watershed Moment?

December 11, 2018

For several years now the big cloud providers – Amazon, Microsoft Azure, Google, et al – have been transforming from technology consumers into technology creators in hardware and software. The most recent example bei Read more…

By John Russell

Mellanox Uses Univa to Extend Silicon Design HPC Operation to Azure

December 11, 2018

Call it a corollary to Murphy’s Law: When a system is most in demand, when end users are most dependent on the system performing as required, when it’s crunch time – that’s when the system is most likely to blow up. Or make you wait in line to use it. Read more…

By Doug Black

Clemson’s Cautionary Cryptomining Tale

December 11, 2018

In some ways, the bigger the computer, the more vulnerable it is to cryptomining as Clemson University discovered after cryptominers dug into its Palmetto supercomputer. When a number of nodes on Clemson University’s P Read more…

By Staff

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Blurring the Lines Between HPC and AI @ SC18

The dominant topic at SC18 was the convergence of HPC and Artificial Intelligence (AI) with some of the biggest research and enterprise HPC users providing perspectives on how HPC and AI are moving closer together. Read more…

Data West Brings Technology Leaders to SDSC

December 6, 2018

Data and technology enthusiasts from around the world descended upon the San Diego Supercomputing Center (SDSC) for the third annual Data West conference, which is taking place this week on the campus of the University o Read more…

By Alex Woodie

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This