E4 Computer Engineering Unveils New ARM-GPU Clusters

By Nicole Hemsoth

November 13, 2012

This week at SC12, Italian cluster maker E4 Computer Engineering, launched a new series heterogeneous clusters, which pair an NVIDIA’s ARM+GPU Tegra3 with a discrete Quadro GPU. We asked E4’s Simone Tinti, who leads the HPC team at E4, to describe the new systems and talk about the advantage they offer to high performance computing users.

HPCwire: What does E4 Computer Engineering do, and who are your primary customers today?

Simone Tinti: E4 Computer Engineering new web site went online just before SC12 with a renewed look and a lot of contents) designs and manufactures high  performance computing and storage systems. We have a vast portfolio of solutions ranging from technical workstation to complete datacenter. E4 is also very active in providing storage solutions.

E4 Computer Engineering is currently operating in Europe, although CARMA solutions will be available worldwide. Our primary customer base is academia and research. For the past 7 years we have been one of the major supplier of CERN. At present we have more than 11,000 cores active in the CERN  datacenter –1700 computing nodes — and more than 20 petabytes of storage.

Other relevant customers are ETHZ, EPFL, INFN, SISSA, ICTP,  Novartis, Merck, NATO and many more.
 
CARMA solutions are the results a E4 and SECO partnership. SECO is a European  designer  and manufacturer  of  high  integrated  board computers  and  systems  for  embedded applications. Founded in 1979 in Italy, SECO attention is focused on developing   innovative products with high performances efficiency, low power    consumption and increased functionality, offering in the meantime a short time-to-market. SECO has designed and manufactured the CARMA Devkit
 
HPCwire:  In a nutshell, could you briefly describe the three ARM-based solutions you are introducing and the application domains they are targeted at?
 
Tinti: We are introducing two platforms able to host carrier boards for the Qseven modules.

The CARMA microcluster, a 5U chassis, contains up to 8 CARMA blades  — by default they have one NVIDIA Tegra 3 plus one NVIDIA Quadro 1000 — and one x86-based  management node.

The CARMA cluster is a 3U chassis, containing up to 12 CARMA2 blades. These are high density blades, each one containing two CARMA blades for a total of two ARM CPUs plus two Quadro 1000 GPUs or 12 DARMA blades with four ARM CPUs per blade. You can, of course, mix DARMA and CARMA2 blades in the same chassis.

All blades (CARMA, CARMA2 , DARMA) are compliant with the Qseven standard so  the motherboard  — or to be more accurate the carrier board — contains only I/O devices like network, HDMI, SATA and so on.

The CPU component  — actually a SoC containing CPU, RAM, Flash memory, graphics adapter — may be selected from broad range of x86 architecture http://www.seco.com/it/itemlist/qseven/. Qseven technology  provides the highest flexibility while reducing engineering costs. In fact you can swap the CPU architecture re-using  the same carrier board without any modification.  SECO is a co-founder of Qseven consortium.

HPCwire: Regarding HPC applications, what are the advantages of the CARMA solutions compared to a more traditional x86/Tesla GPU cluster?  What niche are you filling with these ARM-based solutions?

Tinti: CARMA solutions provides a low power platform, ideal for applications that relies mainly on GPU computing power. With typical GPU computing systems you need a platform in the range of 250 to 350 watt, for example, a dual-Intel Xeon E5 or dual-AMD Opteron 6200 or 6300 in order to have your GPUs up and running. This is fine as long as a relevant part of the computation relies on CPUs, otherwise this is simply a waste a of power.

Usually GPUs are claimed to have a gigaflops per watt ratio of 3 (higher that the ~2 you can achieve on a BlueGene/Q systems, this is true only if you consider the GPU devices — around 200 watts for  600 peak gigaflops. When you consider the whole platform this ratio drops down 1.2 /0.9 not far from a pure CPU systems as documented in the Green500.

With CARMA blades you need only 10 watts for the CPU, RAM, and flash drive; therefore most of the power — 45 watts — is dedicated to GPUs.

The “must” for exploiting CARMA solution is to have an application that is strongly focused on CUDA for CARMA and CARMA2 blades, or on big data/cloud for DARMA blades.

HPCwire:  What is the advantage of pairing a heterogeneous ARM plus GPU Tegra 3 with a discrete Quadro GPU?  What is the intended programming model for such an arrangement?

Tinti: With the current generation of ARM CPUs, you cannot address algorithms based on floating point arithmetic, therefore most scientific applications are excluded. NVIDIA Quadro GPU broadens the range of applications that can be addressed and gives a huge boost to performance.  CARMA is the one and the only platform available on the market that combines ARM’s low power CPUs with powerful NVIDIA GPUs.

HPCwire: Will developers with existing CUDA applications, run on an x86-Tesla set-up, be able to port their codes to the CARMA platform?

Yes, we provide a pre-configured cross compiling environment for ARM, CUDA, and MPI that makes this process very easy. Support services are also available. We are currently porting some applications, which will be disclosed soon. The systems come with the NVIDIA SDK and ORNL’s SHOC benchmark suite.

HPCwire: Are these clusters intended for production environments?

Tinti: The CARMA cluster is designed to be used in production environment, and provides a robust platform for a wide range of application: HPC, big data, and cloud.

The CARMA microcluster is designed to be a perfect development platform. It’s very quiet and can also be placed beside a desk. It could be used to create, but not for critical environments since a redundant power supply or remote management feature, like IPMI, are not available yet. Based upon the feedback we will receive at SC we will eventually release a more robust version of CARMA microcluster.

HPCwire:  Do you have customers with installed systems, or in the pipeline, for any of  the CARMA or DARMA systems?  What geographies do you intend to serve?

Tinti: More than 2000 CARMA dev kit has been sold so far to the most relevant research centers around the world. A lot of industries in different market such as animation, oil & gas, microelectronics, telecommunications, defense, and manufacturing have adopted it as a development platform. Unfortunately we cannot disclose the name, most of them are developing innovative applications and prefer to keep their privacy right now. Most of these customers are of course waiting for a platform ready for production, like the CARMA series.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This