E4 Computer Engineering Unveils New ARM-GPU Clusters

By Nicole Hemsoth

November 13, 2012

This week at SC12, Italian cluster maker E4 Computer Engineering, launched a new series heterogeneous clusters, which pair an NVIDIA’s ARM+GPU Tegra3 with a discrete Quadro GPU. We asked E4’s Simone Tinti, who leads the HPC team at E4, to describe the new systems and talk about the advantage they offer to high performance computing users.

HPCwire: What does E4 Computer Engineering do, and who are your primary customers today?

Simone Tinti: E4 Computer Engineering new web site went online just before SC12 with a renewed look and a lot of contents) designs and manufactures high  performance computing and storage systems. We have a vast portfolio of solutions ranging from technical workstation to complete datacenter. E4 is also very active in providing storage solutions.

E4 Computer Engineering is currently operating in Europe, although CARMA solutions will be available worldwide. Our primary customer base is academia and research. For the past 7 years we have been one of the major supplier of CERN. At present we have more than 11,000 cores active in the CERN  datacenter –1700 computing nodes — and more than 20 petabytes of storage.

Other relevant customers are ETHZ, EPFL, INFN, SISSA, ICTP,  Novartis, Merck, NATO and many more.
 
CARMA solutions are the results a E4 and SECO partnership. SECO is a European  designer  and manufacturer  of  high  integrated  board computers  and  systems  for  embedded applications. Founded in 1979 in Italy, SECO attention is focused on developing   innovative products with high performances efficiency, low power    consumption and increased functionality, offering in the meantime a short time-to-market. SECO has designed and manufactured the CARMA Devkit
 
HPCwire:  In a nutshell, could you briefly describe the three ARM-based solutions you are introducing and the application domains they are targeted at?
 
Tinti: We are introducing two platforms able to host carrier boards for the Qseven modules.

The CARMA microcluster, a 5U chassis, contains up to 8 CARMA blades  — by default they have one NVIDIA Tegra 3 plus one NVIDIA Quadro 1000 — and one x86-based  management node.

The CARMA cluster is a 3U chassis, containing up to 12 CARMA2 blades. These are high density blades, each one containing two CARMA blades for a total of two ARM CPUs plus two Quadro 1000 GPUs or 12 DARMA blades with four ARM CPUs per blade. You can, of course, mix DARMA and CARMA2 blades in the same chassis.

All blades (CARMA, CARMA2 , DARMA) are compliant with the Qseven standard so  the motherboard  — or to be more accurate the carrier board — contains only I/O devices like network, HDMI, SATA and so on.

The CPU component  — actually a SoC containing CPU, RAM, Flash memory, graphics adapter — may be selected from broad range of x86 architecture http://www.seco.com/it/itemlist/qseven/. Qseven technology  provides the highest flexibility while reducing engineering costs. In fact you can swap the CPU architecture re-using  the same carrier board without any modification.  SECO is a co-founder of Qseven consortium.

HPCwire: Regarding HPC applications, what are the advantages of the CARMA solutions compared to a more traditional x86/Tesla GPU cluster?  What niche are you filling with these ARM-based solutions?

Tinti: CARMA solutions provides a low power platform, ideal for applications that relies mainly on GPU computing power. With typical GPU computing systems you need a platform in the range of 250 to 350 watt, for example, a dual-Intel Xeon E5 or dual-AMD Opteron 6200 or 6300 in order to have your GPUs up and running. This is fine as long as a relevant part of the computation relies on CPUs, otherwise this is simply a waste a of power.

Usually GPUs are claimed to have a gigaflops per watt ratio of 3 (higher that the ~2 you can achieve on a BlueGene/Q systems, this is true only if you consider the GPU devices — around 200 watts for  600 peak gigaflops. When you consider the whole platform this ratio drops down 1.2 /0.9 not far from a pure CPU systems as documented in the Green500.

With CARMA blades you need only 10 watts for the CPU, RAM, and flash drive; therefore most of the power — 45 watts — is dedicated to GPUs.

The “must” for exploiting CARMA solution is to have an application that is strongly focused on CUDA for CARMA and CARMA2 blades, or on big data/cloud for DARMA blades.

HPCwire:  What is the advantage of pairing a heterogeneous ARM plus GPU Tegra 3 with a discrete Quadro GPU?  What is the intended programming model for such an arrangement?

Tinti: With the current generation of ARM CPUs, you cannot address algorithms based on floating point arithmetic, therefore most scientific applications are excluded. NVIDIA Quadro GPU broadens the range of applications that can be addressed and gives a huge boost to performance.  CARMA is the one and the only platform available on the market that combines ARM’s low power CPUs with powerful NVIDIA GPUs.

HPCwire: Will developers with existing CUDA applications, run on an x86-Tesla set-up, be able to port their codes to the CARMA platform?

Yes, we provide a pre-configured cross compiling environment for ARM, CUDA, and MPI that makes this process very easy. Support services are also available. We are currently porting some applications, which will be disclosed soon. The systems come with the NVIDIA SDK and ORNL’s SHOC benchmark suite.

HPCwire: Are these clusters intended for production environments?

Tinti: The CARMA cluster is designed to be used in production environment, and provides a robust platform for a wide range of application: HPC, big data, and cloud.

The CARMA microcluster is designed to be a perfect development platform. It’s very quiet and can also be placed beside a desk. It could be used to create, but not for critical environments since a redundant power supply or remote management feature, like IPMI, are not available yet. Based upon the feedback we will receive at SC we will eventually release a more robust version of CARMA microcluster.

HPCwire:  Do you have customers with installed systems, or in the pipeline, for any of  the CARMA or DARMA systems?  What geographies do you intend to serve?

Tinti: More than 2000 CARMA dev kit has been sold so far to the most relevant research centers around the world. A lot of industries in different market such as animation, oil & gas, microelectronics, telecommunications, defense, and manufacturing have adopted it as a development platform. Unfortunately we cannot disclose the name, most of them are developing innovative applications and prefer to keep their privacy right now. Most of these customers are of course waiting for a platform ready for production, like the CARMA series.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Leading Solution Providers

Contributors

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This