E4 Computer Engineering Unveils New ARM-GPU Clusters

By Nicole Hemsoth

November 13, 2012

This week at SC12, Italian cluster maker E4 Computer Engineering, launched a new series heterogeneous clusters, which pair an NVIDIA’s ARM+GPU Tegra3 with a discrete Quadro GPU. We asked E4’s Simone Tinti, who leads the HPC team at E4, to describe the new systems and talk about the advantage they offer to high performance computing users.

HPCwire: What does E4 Computer Engineering do, and who are your primary customers today?

Simone Tinti: E4 Computer Engineering new web site went online just before SC12 with a renewed look and a lot of contents) designs and manufactures high  performance computing and storage systems. We have a vast portfolio of solutions ranging from technical workstation to complete datacenter. E4 is also very active in providing storage solutions.

E4 Computer Engineering is currently operating in Europe, although CARMA solutions will be available worldwide. Our primary customer base is academia and research. For the past 7 years we have been one of the major supplier of CERN. At present we have more than 11,000 cores active in the CERN  datacenter –1700 computing nodes — and more than 20 petabytes of storage.

Other relevant customers are ETHZ, EPFL, INFN, SISSA, ICTP,  Novartis, Merck, NATO and many more.
 
CARMA solutions are the results a E4 and SECO partnership. SECO is a European  designer  and manufacturer  of  high  integrated  board computers  and  systems  for  embedded applications. Founded in 1979 in Italy, SECO attention is focused on developing   innovative products with high performances efficiency, low power    consumption and increased functionality, offering in the meantime a short time-to-market. SECO has designed and manufactured the CARMA Devkit
 
HPCwire:  In a nutshell, could you briefly describe the three ARM-based solutions you are introducing and the application domains they are targeted at?
 
Tinti: We are introducing two platforms able to host carrier boards for the Qseven modules.

The CARMA microcluster, a 5U chassis, contains up to 8 CARMA blades  — by default they have one NVIDIA Tegra 3 plus one NVIDIA Quadro 1000 — and one x86-based  management node.

The CARMA cluster is a 3U chassis, containing up to 12 CARMA2 blades. These are high density blades, each one containing two CARMA blades for a total of two ARM CPUs plus two Quadro 1000 GPUs or 12 DARMA blades with four ARM CPUs per blade. You can, of course, mix DARMA and CARMA2 blades in the same chassis.

All blades (CARMA, CARMA2 , DARMA) are compliant with the Qseven standard so  the motherboard  — or to be more accurate the carrier board — contains only I/O devices like network, HDMI, SATA and so on.

The CPU component  — actually a SoC containing CPU, RAM, Flash memory, graphics adapter — may be selected from broad range of x86 architecture http://www.seco.com/it/itemlist/qseven/. Qseven technology  provides the highest flexibility while reducing engineering costs. In fact you can swap the CPU architecture re-using  the same carrier board without any modification.  SECO is a co-founder of Qseven consortium.

HPCwire: Regarding HPC applications, what are the advantages of the CARMA solutions compared to a more traditional x86/Tesla GPU cluster?  What niche are you filling with these ARM-based solutions?

Tinti: CARMA solutions provides a low power platform, ideal for applications that relies mainly on GPU computing power. With typical GPU computing systems you need a platform in the range of 250 to 350 watt, for example, a dual-Intel Xeon E5 or dual-AMD Opteron 6200 or 6300 in order to have your GPUs up and running. This is fine as long as a relevant part of the computation relies on CPUs, otherwise this is simply a waste a of power.

Usually GPUs are claimed to have a gigaflops per watt ratio of 3 (higher that the ~2 you can achieve on a BlueGene/Q systems, this is true only if you consider the GPU devices — around 200 watts for  600 peak gigaflops. When you consider the whole platform this ratio drops down 1.2 /0.9 not far from a pure CPU systems as documented in the Green500.

With CARMA blades you need only 10 watts for the CPU, RAM, and flash drive; therefore most of the power — 45 watts — is dedicated to GPUs.

The “must” for exploiting CARMA solution is to have an application that is strongly focused on CUDA for CARMA and CARMA2 blades, or on big data/cloud for DARMA blades.

HPCwire:  What is the advantage of pairing a heterogeneous ARM plus GPU Tegra 3 with a discrete Quadro GPU?  What is the intended programming model for such an arrangement?

Tinti: With the current generation of ARM CPUs, you cannot address algorithms based on floating point arithmetic, therefore most scientific applications are excluded. NVIDIA Quadro GPU broadens the range of applications that can be addressed and gives a huge boost to performance.  CARMA is the one and the only platform available on the market that combines ARM’s low power CPUs with powerful NVIDIA GPUs.

HPCwire: Will developers with existing CUDA applications, run on an x86-Tesla set-up, be able to port their codes to the CARMA platform?

Yes, we provide a pre-configured cross compiling environment for ARM, CUDA, and MPI that makes this process very easy. Support services are also available. We are currently porting some applications, which will be disclosed soon. The systems come with the NVIDIA SDK and ORNL’s SHOC benchmark suite.

HPCwire: Are these clusters intended for production environments?

Tinti: The CARMA cluster is designed to be used in production environment, and provides a robust platform for a wide range of application: HPC, big data, and cloud.

The CARMA microcluster is designed to be a perfect development platform. It’s very quiet and can also be placed beside a desk. It could be used to create, but not for critical environments since a redundant power supply or remote management feature, like IPMI, are not available yet. Based upon the feedback we will receive at SC we will eventually release a more robust version of CARMA microcluster.

HPCwire:  Do you have customers with installed systems, or in the pipeline, for any of  the CARMA or DARMA systems?  What geographies do you intend to serve?

Tinti: More than 2000 CARMA dev kit has been sold so far to the most relevant research centers around the world. A lot of industries in different market such as animation, oil & gas, microelectronics, telecommunications, defense, and manufacturing have adopted it as a development platform. Unfortunately we cannot disclose the name, most of them are developing innovative applications and prefer to keep their privacy right now. Most of these customers are of course waiting for a platform ready for production, like the CARMA series.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics cod Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yesterday, Intel reported an Optane and DAOS-based system finishe Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows users to virtually “walk” around the massive supercomputer Read more…

By Oliver Peckham

Supercomputer Simulations Examine Changes in Chesapeake Bay

August 8, 2020

The Chesapeake Bay, the largest estuary in the continental United States, weaves its way south from Maryland, collecting waters from West Virginia, Delaware, DC, Pennsylvania and New York along the way. Like many major e Read more…

By Oliver Peckham

Student Success from ‘Scratch’: CHPC’s Proof is in the Pudding

August 7, 2020

Happy Sithole, who directs the South African Centre for High Performance Computing (SA-CHPC), called the 13th annual CHPC National conference to order on December 1, 2019, at the Birchwood Conference Centre in Kempton Pa Read more…

By Elizabeth Leake

AWS Solution Channel

AWS announces the release of AWS ParallelCluster 2.8.0

AWS ParallelCluster is a fully supported and maintained open source cluster management tool that makes it easy for scientists, researchers, and IT administrators to deploy and manage High Performance Computing (HPC) clusters in the AWS cloud. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

New GE Simulations on Summit to Advance Offshore Wind Power

August 6, 2020

The wind energy sector is a frequent user of high-power simulations, with researchers aiming to optimize wind flows and energy production from the massive turbines. Now, researchers at GE are preparing to undertake a lar Read more…

By Oliver Peckham

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-51 Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yeste Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows use Read more…

By Oliver Peckham

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implem Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This