E4 Computer Engineering Unveils New ARM-GPU Clusters

By Nicole Hemsoth

November 13, 2012

This week at SC12, Italian cluster maker E4 Computer Engineering, launched a new series heterogeneous clusters, which pair an NVIDIA’s ARM+GPU Tegra3 with a discrete Quadro GPU. We asked E4’s Simone Tinti, who leads the HPC team at E4, to describe the new systems and talk about the advantage they offer to high performance computing users.

HPCwire: What does E4 Computer Engineering do, and who are your primary customers today?

Simone Tinti: E4 Computer Engineering new web site went online just before SC12 with a renewed look and a lot of contents) designs and manufactures high  performance computing and storage systems. We have a vast portfolio of solutions ranging from technical workstation to complete datacenter. E4 is also very active in providing storage solutions.

E4 Computer Engineering is currently operating in Europe, although CARMA solutions will be available worldwide. Our primary customer base is academia and research. For the past 7 years we have been one of the major supplier of CERN. At present we have more than 11,000 cores active in the CERN  datacenter –1700 computing nodes — and more than 20 petabytes of storage.

Other relevant customers are ETHZ, EPFL, INFN, SISSA, ICTP,  Novartis, Merck, NATO and many more.
 
CARMA solutions are the results a E4 and SECO partnership. SECO is a European  designer  and manufacturer  of  high  integrated  board computers  and  systems  for  embedded applications. Founded in 1979 in Italy, SECO attention is focused on developing   innovative products with high performances efficiency, low power    consumption and increased functionality, offering in the meantime a short time-to-market. SECO has designed and manufactured the CARMA Devkit
 
HPCwire:  In a nutshell, could you briefly describe the three ARM-based solutions you are introducing and the application domains they are targeted at?
 
Tinti: We are introducing two platforms able to host carrier boards for the Qseven modules.

The CARMA microcluster, a 5U chassis, contains up to 8 CARMA blades  — by default they have one NVIDIA Tegra 3 plus one NVIDIA Quadro 1000 — and one x86-based  management node.

The CARMA cluster is a 3U chassis, containing up to 12 CARMA2 blades. These are high density blades, each one containing two CARMA blades for a total of two ARM CPUs plus two Quadro 1000 GPUs or 12 DARMA blades with four ARM CPUs per blade. You can, of course, mix DARMA and CARMA2 blades in the same chassis.

All blades (CARMA, CARMA2 , DARMA) are compliant with the Qseven standard so  the motherboard  — or to be more accurate the carrier board — contains only I/O devices like network, HDMI, SATA and so on.

The CPU component  — actually a SoC containing CPU, RAM, Flash memory, graphics adapter — may be selected from broad range of x86 architecture http://www.seco.com/it/itemlist/qseven/. Qseven technology  provides the highest flexibility while reducing engineering costs. In fact you can swap the CPU architecture re-using  the same carrier board without any modification.  SECO is a co-founder of Qseven consortium.

HPCwire: Regarding HPC applications, what are the advantages of the CARMA solutions compared to a more traditional x86/Tesla GPU cluster?  What niche are you filling with these ARM-based solutions?

Tinti: CARMA solutions provides a low power platform, ideal for applications that relies mainly on GPU computing power. With typical GPU computing systems you need a platform in the range of 250 to 350 watt, for example, a dual-Intel Xeon E5 or dual-AMD Opteron 6200 or 6300 in order to have your GPUs up and running. This is fine as long as a relevant part of the computation relies on CPUs, otherwise this is simply a waste a of power.

Usually GPUs are claimed to have a gigaflops per watt ratio of 3 (higher that the ~2 you can achieve on a BlueGene/Q systems, this is true only if you consider the GPU devices — around 200 watts for  600 peak gigaflops. When you consider the whole platform this ratio drops down 1.2 /0.9 not far from a pure CPU systems as documented in the Green500.

With CARMA blades you need only 10 watts for the CPU, RAM, and flash drive; therefore most of the power — 45 watts — is dedicated to GPUs.

The “must” for exploiting CARMA solution is to have an application that is strongly focused on CUDA for CARMA and CARMA2 blades, or on big data/cloud for DARMA blades.

HPCwire:  What is the advantage of pairing a heterogeneous ARM plus GPU Tegra 3 with a discrete Quadro GPU?  What is the intended programming model for such an arrangement?

Tinti: With the current generation of ARM CPUs, you cannot address algorithms based on floating point arithmetic, therefore most scientific applications are excluded. NVIDIA Quadro GPU broadens the range of applications that can be addressed and gives a huge boost to performance.  CARMA is the one and the only platform available on the market that combines ARM’s low power CPUs with powerful NVIDIA GPUs.

HPCwire: Will developers with existing CUDA applications, run on an x86-Tesla set-up, be able to port their codes to the CARMA platform?

Yes, we provide a pre-configured cross compiling environment for ARM, CUDA, and MPI that makes this process very easy. Support services are also available. We are currently porting some applications, which will be disclosed soon. The systems come with the NVIDIA SDK and ORNL’s SHOC benchmark suite.

HPCwire: Are these clusters intended for production environments?

Tinti: The CARMA cluster is designed to be used in production environment, and provides a robust platform for a wide range of application: HPC, big data, and cloud.

The CARMA microcluster is designed to be a perfect development platform. It’s very quiet and can also be placed beside a desk. It could be used to create, but not for critical environments since a redundant power supply or remote management feature, like IPMI, are not available yet. Based upon the feedback we will receive at SC we will eventually release a more robust version of CARMA microcluster.

HPCwire:  Do you have customers with installed systems, or in the pipeline, for any of  the CARMA or DARMA systems?  What geographies do you intend to serve?

Tinti: More than 2000 CARMA dev kit has been sold so far to the most relevant research centers around the world. A lot of industries in different market such as animation, oil & gas, microelectronics, telecommunications, defense, and manufacturing have adopted it as a development platform. Unfortunately we cannot disclose the name, most of them are developing innovative applications and prefer to keep their privacy right now. Most of these customers are of course waiting for a platform ready for production, like the CARMA series.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: September (Part 1)

September 18, 2018

In this new bimonthly feature, HPCwire will highlight newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Check back every Read more…

By Oliver Peckham

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and development. Among other things it would establish a National Quantu Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU--and a refresh of its inference server software packaged as Read more…

By George Leopold

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

A Crystal Ball for HPC

People are notoriously bad at predicting the future.  This very much includes experts. In the Forbes article “Why Most Predictions Are So Bad” Philip Tetlock discusses the largest and best-known test of the accuracy of expert predictions which show that any experts would do better if they make random guesses. Read more…

NSF Highlights Expanded Efforts for Broadening Participation in Computing

September 13, 2018

Today, the Directorate of Computer and Information Science and Engineering (CISE) of the NSF released a letter highlighting the expansion of its broadening participation in computing efforts. The letter was penned by Jam Read more…

By Staff

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

No Go for GloFo at 7nm; and the Fujitsu A64FX post-K CPU

September 5, 2018

It’s been a news worthy couple of weeks in the semiconductor and HPC industry. There were several HPC relevant disclosures at Hot Chips 2018 to whet appetites Read more…

By Dairsie Latimer

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This