Microsoft Outfits Azure Cloud for Big Compute

By Tiffany Trader

November 13, 2012

On Tuesday at SC12 Microsoft debuted a set of “big compute” capabilities for its Windows Azure offering. The company is courting the HPC space with more powerful hardware, new instance configurations, and the updated Microsoft HPC Pack 2012. The advanced management software has many new features and supports the running of compute-intensive workloads in three configurations: on premise, on Windows Azure, or a mixed use, hybrid scenario.

Big Compute on Windows Azure – it’s unclear whether that’s the final name – is available in two configurations. The entry-level HPC instance sports 8 cores and 60 GB RAM, while the higher-end option doubles these specs for a total of 16 cores and 120 GB of RAM. The new servers are outfitted with dual Xeon E5-2670s (2.6 GHz) with DDR3 1600 MHz RAM. The nodes are linked via a 40 Gbps InfiniBand network with RDMA, while a 10GbE backplane is used to hook up to external storage and the Internet.

The new configurations call to mind Amazon’s High-Memory Instances. The High-Memory Double Extra Large Instance (m2.2xlarge) has 4 virtual cores with 34 GB of memory, while the High-Memory Quadruple Extra Large Instance (m2.4xlarge) has 8 virtual cores and 68.4 GB of memory.

An important distinction, however, is that Amazon is using 10GbE interconnect technology – and then only in its Cluster Compute and Cluster GPU instances – while Microsoft is introducing the ability to do RDMA (remote direct memory access) in a virtualized environment. The technology provides low-latency network capability for MPI (message passing interface) applications and allows an Azure cluster to send a 4 byte packet across machines in 2.1 microseconds. Alex Sutton, group program manager for Windows HPC Server, interviewed for this article at SC12, said that Microsoft is the first company to offer virtualized RDMA in a commercial environment.

“For applications written to use the message passing interface (MPI) library, RDMA allows memory on multiple computers to act as one pool of memory,” writes Bill Hilf, general manager, Windows Azure Product Marketing, in a blog entry. “Our RDMA solution provides near bare metal performance (i.e., performance comparable to that of a physical machine) in the cloud, which is especially important for Big Compute applications.”

According to Sutton, the performance penalty for running virtualization is down to about a 1 or 2 percent difference now. This will appeal to organizations that want to access the benefits of cloud (flexibility, scalability, on-demand, etc.), but aren’t willing to sacrifice performance. The use of InfiniBand also enhances throughput, allowing applications to scale more effectively and improving time to results.

As a proof of concept, Microsoft ran the LINPACK benchmark across 504 16-core virtual machines (8,064 cores total). The test cluster, named Faenov, achieved 151.3 teraflops (167.7 peak) with 90.2 percent efficiency, earning it the 165th spot on the most recent TOP500 list. In terms of efficiency, the system placed 27th. Faenov ran Windows Server 2012 in virtual machines hosted on Windows Azure on top of Hyper-V virtualization. Sutton makes the point that 90.2 percent efficiency is better than many on-premise (non-virtualized) clusters.

Bringing system I/O latency under control still leaves the bandwidth barrier that is the consumer Internet, but for the majority of customers, this won’t be an issue. For those that need to make large data transfer into and out of the cloud, Microsoft plans to support “FedEx net,” (physical shipping of drives) at some point.

Pricing on the new configurations has not been announced, so price point comparisons to EC2, Google Compute Engine and other IaaS offerings won’t be possible yet. Initially “Big Compute” will only run Windows, but they are looking into Linux. Of course, the hardware can support Linux, but the engineers still need to hammer out how to run it on virtualized RDMA.

Microsoft is describing early success stories around a segment of customers who run Windows and need low-latency. Initial interest and customer stories are in the areas of risk modeling, disease research and complex engineering tasks. Big data is also on Microsoft’s radar, as the company anticipates many big data workloads benefiting from the new configurations.

Today’s announcement shows us a Microsoft that continues to evolve on the cloud front, both to compete against EC2 and in its support for the HPC community. Azure was originally launched as a PaaS offering in 2010, but in June of this year, Microsoft added infrastructure as a service (IaaS) capabilities and began allowing users to spin up Linux VMs. Customers want choice, but with its purpose-built architecture and significant lead time, Amazon is going to be tough to catch. Microsoft has a dedicated following of Windows users, but most of the action in the HPC community is around Linux.

It will be interesting to see whether low-latency virtualization pans out as a differentiator for Azure. It might take some R&D work, but Amazon could similarly outfit their cloud if they see a call for it. In order for the cloud to be profitable, it has to maintain the right balance of utilization. Too much extra inventory is as bad for business in the long run as too little inventory is in the short run. Cloud companies want just the right about of cushion (or excess inventory). To this point, Microsoft says that it is tracking demand and keeping tight control on the ordering process.

Big Compute on Windows Azure is currently in private preview with select partners. A public beta period is expected to commence in the first half of 2013, followed by general availability in roughly the same time frame.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Introduces a Flurry of New EC2 Instances at re:Invent

November 30, 2022

AWS has announced three new Amazon Elastic Compute Cloud (Amazon EC2) instances powered by AWS-designed chips, as well as several new Intel-powered instances – including ones targeting HPC – at its AWS re:Invent 2022 Read more…

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaboration, an Intel executive said last week. There are close t Read more…

2022 Road Trip: NASA Ames Takes Off

November 25, 2022

I left Dallas very early Friday morning after the conclusion of SC22. I had a race with the devil to get from Dallas to Mountain View, Calif., by Sunday. According to Google Maps, this 1,957 mile jaunt would be the longe Read more…

2022 Road Trip: Sandia Brain Trust Sounds Off

November 24, 2022

As the 2022 Great American Supercomputing Road Trip carries on, it’s Sandia’s turn. It was a bright sunny day when I rolled into Albuquerque after a high-speed run from Los Alamos National Laboratory. My interview su Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the car on November 3rd and headed towards SC22 in Dallas, stoppi Read more…

AWS Solution Channel

Shutterstock 110419589

Thank you for visiting AWS at SC22

Accelerate high performance computing (HPC) solutions with AWS. We make extreme-scale compute possible so that you can solve some of the world’s toughest environmental, social, health, and scientific challenges. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

AWS Introduces a Flurry of New EC2 Instances at re:Invent

November 30, 2022

AWS has announced three new Amazon Elastic Compute Cloud (Amazon EC2) instances powered by AWS-designed chips, as well as several new Intel-powered instances Read more…

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaborat Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the c Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected Read more…

Quantum – Are We There (or Close) Yet? No, Says the Panel

November 19, 2022

For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

Gordon Bell Special Prize Goes to LLM-Based Covid Variant Prediction

November 17, 2022

For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Spec Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Leading Solution Providers

Contributors

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire