Microsoft Outfits Azure Cloud for Big Compute

By Tiffany Trader

November 13, 2012

On Tuesday at SC12 Microsoft debuted a set of “big compute” capabilities for its Windows Azure offering. The company is courting the HPC space with more powerful hardware, new instance configurations, and the updated Microsoft HPC Pack 2012. The advanced management software has many new features and supports the running of compute-intensive workloads in three configurations: on premise, on Windows Azure, or a mixed use, hybrid scenario.

Big Compute on Windows Azure – it’s unclear whether that’s the final name – is available in two configurations. The entry-level HPC instance sports 8 cores and 60 GB RAM, while the higher-end option doubles these specs for a total of 16 cores and 120 GB of RAM. The new servers are outfitted with dual Xeon E5-2670s (2.6 GHz) with DDR3 1600 MHz RAM. The nodes are linked via a 40 Gbps InfiniBand network with RDMA, while a 10GbE backplane is used to hook up to external storage and the Internet.

The new configurations call to mind Amazon’s High-Memory Instances. The High-Memory Double Extra Large Instance (m2.2xlarge) has 4 virtual cores with 34 GB of memory, while the High-Memory Quadruple Extra Large Instance (m2.4xlarge) has 8 virtual cores and 68.4 GB of memory.

An important distinction, however, is that Amazon is using 10GbE interconnect technology – and then only in its Cluster Compute and Cluster GPU instances – while Microsoft is introducing the ability to do RDMA (remote direct memory access) in a virtualized environment. The technology provides low-latency network capability for MPI (message passing interface) applications and allows an Azure cluster to send a 4 byte packet across machines in 2.1 microseconds. Alex Sutton, group program manager for Windows HPC Server, interviewed for this article at SC12, said that Microsoft is the first company to offer virtualized RDMA in a commercial environment.

“For applications written to use the message passing interface (MPI) library, RDMA allows memory on multiple computers to act as one pool of memory,” writes Bill Hilf, general manager, Windows Azure Product Marketing, in a blog entry. “Our RDMA solution provides near bare metal performance (i.e., performance comparable to that of a physical machine) in the cloud, which is especially important for Big Compute applications.”

According to Sutton, the performance penalty for running virtualization is down to about a 1 or 2 percent difference now. This will appeal to organizations that want to access the benefits of cloud (flexibility, scalability, on-demand, etc.), but aren’t willing to sacrifice performance. The use of InfiniBand also enhances throughput, allowing applications to scale more effectively and improving time to results.

As a proof of concept, Microsoft ran the LINPACK benchmark across 504 16-core virtual machines (8,064 cores total). The test cluster, named Faenov, achieved 151.3 teraflops (167.7 peak) with 90.2 percent efficiency, earning it the 165th spot on the most recent TOP500 list. In terms of efficiency, the system placed 27th. Faenov ran Windows Server 2012 in virtual machines hosted on Windows Azure on top of Hyper-V virtualization. Sutton makes the point that 90.2 percent efficiency is better than many on-premise (non-virtualized) clusters.

Bringing system I/O latency under control still leaves the bandwidth barrier that is the consumer Internet, but for the majority of customers, this won’t be an issue. For those that need to make large data transfer into and out of the cloud, Microsoft plans to support “FedEx net,” (physical shipping of drives) at some point.

Pricing on the new configurations has not been announced, so price point comparisons to EC2, Google Compute Engine and other IaaS offerings won’t be possible yet. Initially “Big Compute” will only run Windows, but they are looking into Linux. Of course, the hardware can support Linux, but the engineers still need to hammer out how to run it on virtualized RDMA.

Microsoft is describing early success stories around a segment of customers who run Windows and need low-latency. Initial interest and customer stories are in the areas of risk modeling, disease research and complex engineering tasks. Big data is also on Microsoft’s radar, as the company anticipates many big data workloads benefiting from the new configurations.

Today’s announcement shows us a Microsoft that continues to evolve on the cloud front, both to compete against EC2 and in its support for the HPC community. Azure was originally launched as a PaaS offering in 2010, but in June of this year, Microsoft added infrastructure as a service (IaaS) capabilities and began allowing users to spin up Linux VMs. Customers want choice, but with its purpose-built architecture and significant lead time, Amazon is going to be tough to catch. Microsoft has a dedicated following of Windows users, but most of the action in the HPC community is around Linux.

It will be interesting to see whether low-latency virtualization pans out as a differentiator for Azure. It might take some R&D work, but Amazon could similarly outfit their cloud if they see a call for it. In order for the cloud to be profitable, it has to maintain the right balance of utilization. Too much extra inventory is as bad for business in the long run as too little inventory is in the short run. Cloud companies want just the right about of cushion (or excess inventory). To this point, Microsoft says that it is tracking demand and keeping tight control on the ordering process.

Big Compute on Windows Azure is currently in private preview with select partners. A public beta period is expected to commence in the first half of 2013, followed by general availability in roughly the same time frame.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics cod Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yesterday, Intel reported an Optane and DAOS-based system finishe Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows users to virtually “walk” around the massive supercomputer Read more…

By Oliver Peckham

Supercomputer Simulations Examine Changes in Chesapeake Bay

August 8, 2020

The Chesapeake Bay, the largest estuary in the continental United States, weaves its way south from Maryland, collecting waters from West Virginia, Delaware, DC, Pennsylvania and New York along the way. Like many major e Read more…

By Oliver Peckham

Student Success from ‘Scratch’: CHPC’s Proof is in the Pudding

August 7, 2020

Happy Sithole, who directs the South African Centre for High Performance Computing (SA-CHPC), called the 13th annual CHPC National conference to order on December 1, 2019, at the Birchwood Conference Centre in Kempton Pa Read more…

By Elizabeth Leake

AWS Solution Channel

AWS announces the release of AWS ParallelCluster 2.8.0

AWS ParallelCluster is a fully supported and maintained open source cluster management tool that makes it easy for scientists, researchers, and IT administrators to deploy and manage High Performance Computing (HPC) clusters in the AWS cloud. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

New GE Simulations on Summit to Advance Offshore Wind Power

August 6, 2020

The wind energy sector is a frequent user of high-power simulations, with researchers aiming to optimize wind flows and energy production from the massive turbines. Now, researchers at GE are preparing to undertake a lar Read more…

By Oliver Peckham

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-51 Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yeste Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows use Read more…

By Oliver Peckham

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implem Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This