Blue Waters Opts Out of TOP500

By Tiffany Trader

November 16, 2012

The NCSA Blue Waters system is one of the fastest supercomputers in the world, but it won’t be appearing on the TOP500 list – nor will it be taking part in the HPC Challenge (HPCC) awards. While it’s generally understood that there are an unknown number of classified and commercial systems that don’t show up on the list, this is the first time an open science system has opted out in such a fashion.

According to the folks at the National Center for Supercomputing Applications (NCSA), there’s a good reason for this. In the days leading up to the 24th annual Supercomputing Conference (SC12) in Salt Lake City, HPCwire spoke with Blue Waters Project Director Bill Kramer to find out what went into this decision.

HPCwire: How long has Blue Waters been up and running? Would there have been enough time to run Linpack benchmark and submit to the TOP500 list?

Bill Kramer: Oh sure, and we would have had good results if we had chosen to run it. We even had an early science system that was a resource in the US academic world going back to January last year, and we chose not to submit that for the June list.

The system has been up and running full-scale applications in test mode and debugging and scaling platforms and so on from mid-summer on, and particularly since Linpack is such a simple test and does not require I/O, we had plenty of time to run the test.

In fact we have run the test across the entire system and the HPCC test as well, so this was a very conscious decision not to do it – it does not reflect any problems or issues.

HPCwire: Did you get the results you would have expected and are you going to release them?

Kramer: We don’t see any reason to publicize it, but there were requirements in the contract. These tests obtained very good results, but we’d rather exercise the system with real applications. For example, there are some full-scale science codes that have run over 25,000 nodes for multiple days, and they’re actually doing a science problem as opposed to a trivial problem.

We’d much rather use real applications with all the I/O and everything else in there to vet the system and accomplish a real result along the way and those are at least as stressful on the system as Linpack would be because they exercise all parts of the system not just the floating point units. Our focus is reflecting what the real scientists do not a very small subset of what some teams do.

HPCwire: So the contract with Cray did specify Linpack?

Kramer: HPCC was specified [editor’s note: HPCC includes Linpack], and that was one of hundreds of points – all of the others are much more relevant tests. For historical purposes, that was in there from the original NSF release, so we are meeting that, but it’s not relevant to whether the system is a quality system for sustained performance.

HPCwire: Are you releasing the HPCC results?

Kramer: No, and for the same reason. It’s better, but still doesn’t really reflect what to expect for real sustained performance for real applications. It’s better because it has multiple categories, but HPCC still lacks anything that has to do what to do with I/O, which is one of the major bottlenecks, so testing interconnect and testing memory performance.

Our challenge is not with Linpack as a benchmark and not with having a list, our concern is using a very simplified benchmark that has value in its own right, but not for the purpose of indicating usefulness of the system, or productivity of the system or effectiveness of the system.

HPCwire: How and when was the decision arrived at?

Kramer: Our entire project focus has been on sustained petascale performance, and it’s not one-dimensional, it’s not peak performance, it’s not Linpack performance – it’s performance for sustained real-world applications. If you go back to the original NSF solicitation, they encapsulated that into a set of six applications that they projected far forward to the challenging scientific problems that required this type of system and they set their metric to solving that problem within a certain amount of wall-clock time.

Going back to the very beginning, the philosophical nature of how this project came to be was all about delivering effective petascale computing. The investment strategy was to have a very large amount of memory, a very large amount of storage rather than trying to obtain a high single metric.

As we progressed, we have with National Science Foundation and many reviews developed a much more meaningful metric from our point of view called the Sustained Petascale Performance (SPP) test. The way we crafted that was by going to the science teams that we know and have been working with on the system and getting their real applications and their real science problems and using those as the measure of performance.

There are 12 application combinations that we are using to establish the performance of the system over a sustained petaflop in addition to the original NSF six applications. So we are actually going back to first principles: what are the scientists trying to do and making sure they’re able to do their required work within a reasonable amount of elapsed time.

The other part of this is enabling a diverse science base. The NSF, computational and data analytics community have a diverse portfolio of science, arguably the most diverse, and that diverse portfolio requires systems that perform well on that wide range of codes.

That’s really what our measures are and that’s what we remain focused on, so the decision to not list it is very consistent with what the project’s been about and what NSF’s goals have been going back to day one. The decision was made well before we needed to do any work to even submit the early system back in last January. It’s been a long–term process; it was made mutually by the university and NSF as being the right thing to do for the real goals of our project, and we’re very comfortable with it.

Next >>

HPCwire: Do you think we need a ranking system?

Kramer: I think lists are good, and I think as a focused, purposed benchmark, Linpack is good. I think the TOP500 list, though, combines those two things in a way that was interesting at some point, a while ago, but that now in some ways may be doing detriment to the community.

I have no trouble with lists and I think actually the community needs some idea of how we’re progressing, but we really need to be clear on what these lists mean, so for example, for much of the high-level systems on TOP500, what really determines how high they are is how much money is spent, not how well they perform on real applications.

There have been systems that never really get out to perform on real applications, but are on the list. There are ways to submit systems well before they are able to run many scientific or engineering applications. The historical nature of the list is perturbed by those other attributes and maybe those are what the lists measure. I can say for sure it doesn’t measure the progress in real sustained performance because there’s a severe disconnect between what the list says and what real sustained performance measures indicate.

HPCwire: Do we need something new or could we improve our current metrics to your satisfaction?

Kramer: I think there are ways to improve on relevance under the Linpack measurement. The people who put together the original list and maintain the list also talk about these things. Everybody’s afraid to take the first step. In the hallways everybody talks about the issues and the risks for misinterpretation for people who are not in our community, but then everyone says, “but I have to do it.”

Well we’re fortunate enough that we don’t have to do it, and we’re talking the first step by saying this is enough, we need to go to do something else. We are committed to working with others in the community to come up with a better way to describe how effective supercomputing is for solving unsolvable problems and that’s really the important thing.

HPCwire: If the benchmarks are very complex or we have too many of them, is that practical for a wide range of systems?

Kramer: Yes, I’m convinced it is. The NAS parallel benchmarks were very effective in their time. I’m not saying that they’re the right ones now, but in their time period, for a decade or so… There were eight tests that everybody ran. They were pseudo-applications; they didn’t have I/O in them for example, and I/O was less of a challenge in those days, but they gave you a much better picture of what you could expect out of systems.

Other benchmark suites that have between 8–12 tests are being used. The DoD has a pretty good suite that represents a reasonable workload. NERSC has a good persistence suite that has evolved over time, but I think there are enough proofs of existence that yes, you can have a much more dynamic set of things. HPCC might be a place to go leverage with those codes, but that’s also still difficult to figure how it translates into real world applications and how much you can get out of that.

If you look at the graph of real measured performance, say with the NERSC suite of codes, and look at that through 15 years of history and you look at the TOP500 lists, you see that there’s a strong disconnect between what really is achievable with systems and what the list says.

The list also correlates with the amount of funding available to pay for things. The challenges that bottleneck real performance are not being addressed. So I think yes, you can craft those processes in a tractable amount of time that is portable and expandable and that’s been done several different ways.

Next >>

HPCwire: Who are you directing this statement at? What outcome are you hoping for?

Kramer: Blue Waters is a leader in the community in many different ways, and this was another way we felt we could lead to get a more explicit dialogue going in the community about whether this is the way we want to use our metric for say exascale computing and whether this is still relevant.

HPCwire: What about push-back, both in general and your vendors, Cray and NVIDIA?

Kramer: We’ve been very clear with all of our partners and others who may have been partners, that spending tremendous effort to get a number on a list is not indicative of what’s really important to the project is not our priority so we’ve been very open with the partners and they have no objection to this.

HPCwire: In an article on the NCSA website, you write that “the TOP500 list and its associated Linpack have multiple serious problems,” and you’ve covered some of those already, would you like to highlight the ones you feel are most problematic?

Kramer: The main concerns are that it does not give an indication of value and particularly it doesn’t give an indication of value for sustained performance. Value is really the potential of a system to do work divided by its cost, so you can’t tell anything about the value; all you can tell is if you spend a lot of money on a system, you can get up high on the list.

Blue Waters is a project that is spending a significant amount of money, but it’s going into a very balanced system, not one that could have high FLOPS rates. I can tell you that if we had put all our money into peak performance and Linpack, we would have been number one on the list, for sure, for awhile.

If I had not done the investment in the world’s largest memory or the world’s most intense storage system, and just said I want to have the most number of peak FLOPS that directly translate into Linpack FLOPS that directly translates to this number and I don’t care about how hard it is for the science community to make use of those and how many science projects get disenfranchised because they’re not able to use GPUs at scale for a while, then we easily could have been on the top of the list for a number of cycles.

But that’s not our mission. It’s not what we designed our system for and it’s not what many people design their systems for. It could have led to a very poor choice for the real mission by paying attention to where the position is on the TOP500 list.

There are other aspects: the fact that you spend an awful lot of effort on getting something to work that you use once and throw away essentially all that effort. Some places have had to spend multiple weeks or months trying to get a number instead of doing science and engineering.

The improvements that we’re going to make to these SPP codes are actually improvements that go back to the science teams, so it’s a permanent improvement rather than a lot of that effort just going into a test case. It’s not a good way of allocating resources because you can’t reuse those resources.

HPCwire: Why now?

Kramer: The algorithmic space, the application space has changed dramatically from when the major implementation issues were dense linear algebra. There are many more things that are at least as important if not more important now in the way that systems are designed and what we’re trying to deal with.

Many methods have gone to sparse rather than dense, for example. As an indicator of what is really important in a system – we’re saying it’s time to relook at that and it’s not in the mission of our project to continue in that mode.

Last year at Supercomputing, there was a theme of sustained-performance and there were many parties that took part in this discussion. There were panel sessions and papers, etc. and this year, we hope we’ll be able to start the dialogue about how we do a better job of metrics that we can easily explain, but are much more much more meaningful for the real missions of our HPC systems.

Maybe by SC13 there’s a way to report back to the community – a better way that parts of the community, or hopefully the whole community, can say … after 20 years of doing it this way it’s time to do something different.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Galaxies, Fugaku, Electron Microscopes & More

January 25, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

Supercomputers Assist Hunt for Mysterious Axion Particle

January 21, 2021

In the 1970s, scientists theorized the existence of axions: particles born in the hearts of stars that, when exposed to a magnetic field, become light particles, and which may even comprise dark matter. To date, however, Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This