Michio Kaku Sketches Technological Wonderland of the Future at SC12

By Ian Armas Foster

November 16, 2012

Imagine a world where a computer chip costs just a penny. They could be embedded anywhere and everywhere, including the wallpaper of your house. Instead of sitting home alone on a Friday night drinking oneself into a stupor, one could simply go to his wall and look up others who are alone looking at their wall on a Friday night in order to find a companion for the night.

Dr. Michio Kaku, celebrity physicist who has written New York Times Bestselling books, Physics of the Impossible and Physics of the Future, talked about the implications of this smart wall and much more in his much-anticipated keynote address at Supercomputing 2012 (SC12) this week in Salt Lake City, where he discussed the huge role that high performance computing will play in the year 2100.

Since the 18th century, science and technology have been key to attaining wealth in this world, Kaku observed. When physicists figured out the laws of thermodynamics and were thus able to calculate the amount of energy and power one could derive from manipulating steam, the Industrial Revolution ensued. The steel mills and railroads that followed generated tremendous revenue, but after too much of that wealth was invested in railroads on the London Stock Exchange, the system ground to a halt in 1850.

Incidentally, in 1850 the Industrial Revolution was just getting underway in the United States. While part of that had to do with the relative youth of the country, an amusing part (in a historical sense anyway) had to do with Britain’s flat refusal to let so much as a blueprint leave their country. It wasn’t until Francis Cabot Lowell returned to America with the technical specifications in his photographic memory that the revolution took off in the US.

Either way, by the time Maxwell’s light equations and Faraday’s force field lines began paving the way for physicists harnessing the power of electricity and magnetism, the United States had clearly made up their deficit from the Industrial Revolution delay. But once again, an unsustainable portion of the ensuing wealth was poured into one thing, in this case the utilities. As a result, the New York Stock Exchange crash of 1929 plunged the US into the Great Depression, Kaku noted.

Physicists, as Kaku continued setting the historical scene, then further manipulated the laws of electricity and magnetism to create machines that could add large numbers together by simply flipping little magnets. These machines were called computers. The led to a third expansion of wealth, a third improper allocation of investments (this time in the housing market), and a third economic collapse.

This is an intriguing and relevant history for one paramount reason: the people in the audience listening to Dr. Kaku talk about the results of the first three technological revolutions will be the people responsible for the fourth. Kaku calls the upcoming 80 years an “era of high technology.” Some may call it the Information Revolution. Whatever the new era happens to be called, advances in supercomputing will drive it.

The benefits as Dr. Kaku predicts them are vast and can be best described in terms of vocabulary that will become obsolete. Cars will be able to drive themselves, essentially eliminating the 30,000 auto accident deaths a year in the United States. As Kaku puts it, the term “car accident” will become passé. In fifty years, the word “traffic” may refer more to the 1960’s musical group than a bottleneck of automobiles.

Like the word “polio,” the word “tumor” could be relegated to a reminder of unpleasant times past, as smart toilets equipped with computer chips hooked up to a supercomputing network analyze DNA for signs of cancerous cells. Destroying those cancerous cells individually through nanotechnology, instead of through brute force chemotherapy could become possible. Perhaps most impressively, MRIs could literally be conducted from a Star Trek-like Tricorder, as chips extend magnetic fields from supercomputers such that they envelop a person like a natural MRI machine.

Further, like society simply accepts running water and electricity as facts of life that need not be mentioned, computers are likely to be accepted a similar fact of life. As computer chips are imprinted onto almost everything, from walls to paper, to clothing, to contact lenses, the entire world becomes, in essence, one large, networked computer.
How will this all happen? Through a system of mass producing computer chips where each chip costs about a penny. While Kaku leaves it somewhat unclear how exactly that will happen (he’s a string theory physicist after all), it is clear that the path is not through silicon. Moore’s Law, the physical constraint which allows chip size to halve every 18 months or so, is slowing down.

That notion led to possibly the most harrowing possibility Kaku brought up: Silicon Valley becoming somewhat of a rust belt in the next 20 to 25 years. However, this should not be news to those in the know. As with previous technological advancements, businesses will have to adapt or be left by the wayside.

Maybe carbon nanotubes will take silicon’s place. Maybe that job falls to quanta. Either way, according to Kaku, the cheapening of these computing resources will lead to a much more automated the needs of society.

Of course, with increased automation comes an anxiety that the automation will replace humans. To a certain extent they will, says Kaku, but not to the extent that many may fear. It is important to remember that computers at their core are highly intricate adding machines. So only those with jobs that are highly iterative and repetitive, accountants for example, may need to worry, he argues.

The marketplace as Kaku sees it is shifting from a commodity-based system to one based in intelligence and creativity. For example, computer hardware can be mass-produced without much human intervention. Software cannot. It requires common sense, intuition, and creativity to produce software. Jobs that require those skills will persist. For the most part, those jobs will require a fair amount of higher education. Those which don’t require common sense, intuition, and creativity—the most boring of desk jobs—will  cease to exist according to Kaku.

An audience member brought up an interesting point during the Q and A session: if we know that this upcoming information revolution will come to a head in 80 years or so, how do we avoid the bubble bursting once again? According to Kaku, the answer lies in changing investment rules to control reckless speculation.

Interestingly, the nature of the oncoming information revolution might actually be able to prevent such unsustainable growth. Today’s predictive analytics are far superior to those of four years ago and may have been able to warn investors when markets become over-heated.

As SC12 wraps up, it is important to remember how key the HPC industry will be in advancing society throughout the next 80 years. Dr. Kaku was preaching to the choir here in his keynote speech, but those songs resonate with scientific and societal reality.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This