Michio Kaku Sketches Technological Wonderland of the Future at SC12

By Ian Armas Foster

November 16, 2012

Imagine a world where a computer chip costs just a penny. They could be embedded anywhere and everywhere, including the wallpaper of your house. Instead of sitting home alone on a Friday night drinking oneself into a stupor, one could simply go to his wall and look up others who are alone looking at their wall on a Friday night in order to find a companion for the night.

Dr. Michio Kaku, celebrity physicist who has written New York Times Bestselling books, Physics of the Impossible and Physics of the Future, talked about the implications of this smart wall and much more in his much-anticipated keynote address at Supercomputing 2012 (SC12) this week in Salt Lake City, where he discussed the huge role that high performance computing will play in the year 2100.

Since the 18th century, science and technology have been key to attaining wealth in this world, Kaku observed. When physicists figured out the laws of thermodynamics and were thus able to calculate the amount of energy and power one could derive from manipulating steam, the Industrial Revolution ensued. The steel mills and railroads that followed generated tremendous revenue, but after too much of that wealth was invested in railroads on the London Stock Exchange, the system ground to a halt in 1850.

Incidentally, in 1850 the Industrial Revolution was just getting underway in the United States. While part of that had to do with the relative youth of the country, an amusing part (in a historical sense anyway) had to do with Britain’s flat refusal to let so much as a blueprint leave their country. It wasn’t until Francis Cabot Lowell returned to America with the technical specifications in his photographic memory that the revolution took off in the US.

Either way, by the time Maxwell’s light equations and Faraday’s force field lines began paving the way for physicists harnessing the power of electricity and magnetism, the United States had clearly made up their deficit from the Industrial Revolution delay. But once again, an unsustainable portion of the ensuing wealth was poured into one thing, in this case the utilities. As a result, the New York Stock Exchange crash of 1929 plunged the US into the Great Depression, Kaku noted.

Physicists, as Kaku continued setting the historical scene, then further manipulated the laws of electricity and magnetism to create machines that could add large numbers together by simply flipping little magnets. These machines were called computers. The led to a third expansion of wealth, a third improper allocation of investments (this time in the housing market), and a third economic collapse.

This is an intriguing and relevant history for one paramount reason: the people in the audience listening to Dr. Kaku talk about the results of the first three technological revolutions will be the people responsible for the fourth. Kaku calls the upcoming 80 years an “era of high technology.” Some may call it the Information Revolution. Whatever the new era happens to be called, advances in supercomputing will drive it.

The benefits as Dr. Kaku predicts them are vast and can be best described in terms of vocabulary that will become obsolete. Cars will be able to drive themselves, essentially eliminating the 30,000 auto accident deaths a year in the United States. As Kaku puts it, the term “car accident” will become passé. In fifty years, the word “traffic” may refer more to the 1960’s musical group than a bottleneck of automobiles.

Like the word “polio,” the word “tumor” could be relegated to a reminder of unpleasant times past, as smart toilets equipped with computer chips hooked up to a supercomputing network analyze DNA for signs of cancerous cells. Destroying those cancerous cells individually through nanotechnology, instead of through brute force chemotherapy could become possible. Perhaps most impressively, MRIs could literally be conducted from a Star Trek-like Tricorder, as chips extend magnetic fields from supercomputers such that they envelop a person like a natural MRI machine.

Further, like society simply accepts running water and electricity as facts of life that need not be mentioned, computers are likely to be accepted a similar fact of life. As computer chips are imprinted onto almost everything, from walls to paper, to clothing, to contact lenses, the entire world becomes, in essence, one large, networked computer.
How will this all happen? Through a system of mass producing computer chips where each chip costs about a penny. While Kaku leaves it somewhat unclear how exactly that will happen (he’s a string theory physicist after all), it is clear that the path is not through silicon. Moore’s Law, the physical constraint which allows chip size to halve every 18 months or so, is slowing down.

That notion led to possibly the most harrowing possibility Kaku brought up: Silicon Valley becoming somewhat of a rust belt in the next 20 to 25 years. However, this should not be news to those in the know. As with previous technological advancements, businesses will have to adapt or be left by the wayside.

Maybe carbon nanotubes will take silicon’s place. Maybe that job falls to quanta. Either way, according to Kaku, the cheapening of these computing resources will lead to a much more automated the needs of society.

Of course, with increased automation comes an anxiety that the automation will replace humans. To a certain extent they will, says Kaku, but not to the extent that many may fear. It is important to remember that computers at their core are highly intricate adding machines. So only those with jobs that are highly iterative and repetitive, accountants for example, may need to worry, he argues.

The marketplace as Kaku sees it is shifting from a commodity-based system to one based in intelligence and creativity. For example, computer hardware can be mass-produced without much human intervention. Software cannot. It requires common sense, intuition, and creativity to produce software. Jobs that require those skills will persist. For the most part, those jobs will require a fair amount of higher education. Those which don’t require common sense, intuition, and creativity—the most boring of desk jobs—will  cease to exist according to Kaku.

An audience member brought up an interesting point during the Q and A session: if we know that this upcoming information revolution will come to a head in 80 years or so, how do we avoid the bubble bursting once again? According to Kaku, the answer lies in changing investment rules to control reckless speculation.

Interestingly, the nature of the oncoming information revolution might actually be able to prevent such unsustainable growth. Today’s predictive analytics are far superior to those of four years ago and may have been able to warn investors when markets become over-heated.

As SC12 wraps up, it is important to remember how key the HPC industry will be in advancing society throughout the next 80 years. Dr. Kaku was preaching to the choir here in his keynote speech, but those songs resonate with scientific and societal reality.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics cod Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yesterday, Intel reported an Optane and DAOS-based system finishe Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows users to virtually “walk” around the massive supercomputer Read more…

By Oliver Peckham

Supercomputer Simulations Examine Changes in Chesapeake Bay

August 8, 2020

The Chesapeake Bay, the largest estuary in the continental United States, weaves its way south from Maryland, collecting waters from West Virginia, Delaware, DC, Pennsylvania and New York along the way. Like many major e Read more…

By Oliver Peckham

Student Success from ‘Scratch’: CHPC’s Proof is in the Pudding

August 7, 2020

Happy Sithole, who directs the South African Centre for High Performance Computing (SA-CHPC), called the 13th annual CHPC National conference to order on December 1, 2019, at the Birchwood Conference Centre in Kempton Pa Read more…

By Elizabeth Leake

AWS Solution Channel

University of Adelaide Provides Seamless Bioinformatics Training Using AWS

The University of Adelaide, established in South Australia in 1874, maintains a rich history of scientific innovation. For more than 140 years, the institution and its researchers have had an impact all over the world—making vital contributions to the invention of X-ray crystallography, insulin, penicillin, and the Olympic torch. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

New GE Simulations on Summit to Advance Offshore Wind Power

August 6, 2020

The wind energy sector is a frequent user of high-power simulations, with researchers aiming to optimize wind flows and energy production from the massive turbines. Now, researchers at GE are preparing to undertake a lar Read more…

By Oliver Peckham

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-51 Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yeste Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows use Read more…

By Oliver Peckham

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implem Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This