Michio Kaku Sketches Technological Wonderland of the Future at SC12

By Ian Armas Foster

November 16, 2012

Imagine a world where a computer chip costs just a penny. They could be embedded anywhere and everywhere, including the wallpaper of your house. Instead of sitting home alone on a Friday night drinking oneself into a stupor, one could simply go to his wall and look up others who are alone looking at their wall on a Friday night in order to find a companion for the night.

Dr. Michio Kaku, celebrity physicist who has written New York Times Bestselling books, Physics of the Impossible and Physics of the Future, talked about the implications of this smart wall and much more in his much-anticipated keynote address at Supercomputing 2012 (SC12) this week in Salt Lake City, where he discussed the huge role that high performance computing will play in the year 2100.

Since the 18th century, science and technology have been key to attaining wealth in this world, Kaku observed. When physicists figured out the laws of thermodynamics and were thus able to calculate the amount of energy and power one could derive from manipulating steam, the Industrial Revolution ensued. The steel mills and railroads that followed generated tremendous revenue, but after too much of that wealth was invested in railroads on the London Stock Exchange, the system ground to a halt in 1850.

Incidentally, in 1850 the Industrial Revolution was just getting underway in the United States. While part of that had to do with the relative youth of the country, an amusing part (in a historical sense anyway) had to do with Britain’s flat refusal to let so much as a blueprint leave their country. It wasn’t until Francis Cabot Lowell returned to America with the technical specifications in his photographic memory that the revolution took off in the US.

Either way, by the time Maxwell’s light equations and Faraday’s force field lines began paving the way for physicists harnessing the power of electricity and magnetism, the United States had clearly made up their deficit from the Industrial Revolution delay. But once again, an unsustainable portion of the ensuing wealth was poured into one thing, in this case the utilities. As a result, the New York Stock Exchange crash of 1929 plunged the US into the Great Depression, Kaku noted.

Physicists, as Kaku continued setting the historical scene, then further manipulated the laws of electricity and magnetism to create machines that could add large numbers together by simply flipping little magnets. These machines were called computers. The led to a third expansion of wealth, a third improper allocation of investments (this time in the housing market), and a third economic collapse.

This is an intriguing and relevant history for one paramount reason: the people in the audience listening to Dr. Kaku talk about the results of the first three technological revolutions will be the people responsible for the fourth. Kaku calls the upcoming 80 years an “era of high technology.” Some may call it the Information Revolution. Whatever the new era happens to be called, advances in supercomputing will drive it.

The benefits as Dr. Kaku predicts them are vast and can be best described in terms of vocabulary that will become obsolete. Cars will be able to drive themselves, essentially eliminating the 30,000 auto accident deaths a year in the United States. As Kaku puts it, the term “car accident” will become passé. In fifty years, the word “traffic” may refer more to the 1960’s musical group than a bottleneck of automobiles.

Like the word “polio,” the word “tumor” could be relegated to a reminder of unpleasant times past, as smart toilets equipped with computer chips hooked up to a supercomputing network analyze DNA for signs of cancerous cells. Destroying those cancerous cells individually through nanotechnology, instead of through brute force chemotherapy could become possible. Perhaps most impressively, MRIs could literally be conducted from a Star Trek-like Tricorder, as chips extend magnetic fields from supercomputers such that they envelop a person like a natural MRI machine.

Further, like society simply accepts running water and electricity as facts of life that need not be mentioned, computers are likely to be accepted a similar fact of life. As computer chips are imprinted onto almost everything, from walls to paper, to clothing, to contact lenses, the entire world becomes, in essence, one large, networked computer.
How will this all happen? Through a system of mass producing computer chips where each chip costs about a penny. While Kaku leaves it somewhat unclear how exactly that will happen (he’s a string theory physicist after all), it is clear that the path is not through silicon. Moore’s Law, the physical constraint which allows chip size to halve every 18 months or so, is slowing down.

That notion led to possibly the most harrowing possibility Kaku brought up: Silicon Valley becoming somewhat of a rust belt in the next 20 to 25 years. However, this should not be news to those in the know. As with previous technological advancements, businesses will have to adapt or be left by the wayside.

Maybe carbon nanotubes will take silicon’s place. Maybe that job falls to quanta. Either way, according to Kaku, the cheapening of these computing resources will lead to a much more automated the needs of society.

Of course, with increased automation comes an anxiety that the automation will replace humans. To a certain extent they will, says Kaku, but not to the extent that many may fear. It is important to remember that computers at their core are highly intricate adding machines. So only those with jobs that are highly iterative and repetitive, accountants for example, may need to worry, he argues.

The marketplace as Kaku sees it is shifting from a commodity-based system to one based in intelligence and creativity. For example, computer hardware can be mass-produced without much human intervention. Software cannot. It requires common sense, intuition, and creativity to produce software. Jobs that require those skills will persist. For the most part, those jobs will require a fair amount of higher education. Those which don’t require common sense, intuition, and creativity—the most boring of desk jobs—will  cease to exist according to Kaku.

An audience member brought up an interesting point during the Q and A session: if we know that this upcoming information revolution will come to a head in 80 years or so, how do we avoid the bubble bursting once again? According to Kaku, the answer lies in changing investment rules to control reckless speculation.

Interestingly, the nature of the oncoming information revolution might actually be able to prevent such unsustainable growth. Today’s predictive analytics are far superior to those of four years ago and may have been able to warn investors when markets become over-heated.

As SC12 wraps up, it is important to remember how key the HPC industry will be in advancing society throughout the next 80 years. Dr. Kaku was preaching to the choir here in his keynote speech, but those songs resonate with scientific and societal reality.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Officials, scientists and other stakeholders celebrated the new sy Read more…

By Staff report

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Indiana University Researchers Use Supercomputing to Model the State’s Largest Watershed

February 20, 2020

With water stressors on the rise, understanding and protecting water supplies is more important than ever. Now, a team of researchers from Indiana University has created a new climate change data portal to help Indianans Read more…

By Staff report

TACC – Supporting Portable, Reproducible, Computational Science with Containers

February 20, 2020

Researchers who use supercomputers for science typically don't limit themselves to one system. They move their projects to whatever resources are available, often using many different systems simultaneously, in their lab Read more…

By Aaron Dubrow

China Researchers Set Distance Record in Quantum Memory Entanglement

February 20, 2020

Efforts to develop the necessary capabilities for building a practical ‘quantum-based’ internet have been ongoing for years. One of the biggest challenges is being able to maintain and manage entanglement of remote q Read more…

By John Russell

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

New Algorithm Allows PCs to Challenge HPC in Weather Forecasting

February 19, 2020

Accurate weather forecasting has, by and large, been situated squarely in the domain of high-performance computing – just this week, the UK announced a nearly $1.6 billion investment in the world’s largest supercompu Read more…

By Oliver Peckham

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Japan’s AIST Benchmarks Intel Optane; Cites Benefit for HPC and AI

February 19, 2020

Last April Intel released its Optane Data Center Persistent Memory Module (DCPMM) – byte addressable nonvolatile memory – to increase main memory capacity a Read more…

By John Russell

UK Announces £1.2 Billion Weather and Climate Supercomputer

February 19, 2020

While the planet is heating up, so is the race for global leadership in weather and climate computing. In a bombshell announcement, the UK government revealed p Read more…

By Oliver Peckham

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or Read more…

By Oliver Peckham

Eni to Retake Industry HPC Crown with Launch of HPC5

February 12, 2020

With the launch of its Dell-built HPC5 system, Italian energy company Eni regains its position atop the industrial supercomputing leaderboard. At 52-petaflops p Read more…

By Tiffany Trader

Trump Budget Proposal Again Slashes Science Spending

February 11, 2020

President Donald Trump’s FY2021 U.S. Budget, submitted to Congress this week, again slashes science spending. It’s a $4.8 trillion statement of priorities, Read more…

By John Russell

Policy: Republicans Eye Bigger Science Budgets; NSF Celebrates 70th, Names Idea Machine Winners

February 5, 2020

It’s a busy week for science policy. Yesterday, the National Science Foundation announced winners of its 2026 Idea Machine contest seeking directions for futu Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This