The Six Personalities of Supercomputing

By Andrew Jones

November 16, 2012

There are two types of people in supercomputing – people that have a top 10 supercomputer and people that don’t. Or people who understand the exascale problem and people who understand the missing middle problem. Or people who have scalable applications and people that don’t.

Or people who claim just two types of person and then list several non-exclusive options.

In my usual part serious, part provocative style, here is my light-hearted look at the different personality stereotypes involved in high performance computing. This is by no means an exclusive list, but it does illustrate the range of people who contribute to the flavor of the world of supercomputing.

1. The Great Wall of China type.Our supercomputer is so big you can see it from outer space!” To these people, the size of the supercomputer is the primary factor determining standing in the supercomputing world. They’ll talk to you if your supercomputer can be seen from low orbit, will feel sorry for you if your machine is only visible from low flying aircraft, and refuse to acknowledge your relevance if your system is only visible from the ground.

Now, in no way am I suggesting that the size of a supercomputer is not important. Almost self-evidently it is. A more powerful supercomputer can enable more realistic simulations, new kinds of science enquiry, or more comprehensive data analytics.

And sometimes real breakthroughs do occur as a direct result of the scale of the supercomputer used. But smaller supercomputers, even ones not visible from altitude, also deliver cutting edge science, engineering and data analytics.

2. The Apocalypse type. These people are convinced the end of supercomputing is at hand. Most of them focus on the technology challenges that seemingly erect impassable barriers to our progress. Exascale can’t happen because of power. And even if we could afford the power, we wouldn’t be able to program it. And even then, the system/application would collapse in a statistically inevitable heap of errors after a few minutes. Not to mention the skills shortage. We may as well give up now and just keep deploying the systems we have now.

Then there are the ones who proclaim that doom is not technological; it is political and financial. They argue that we cannot sustain the increasing budgets at the national lab scale, nor will senior managers in research-led businesses fund the increasing demand for supercomputer technology to enable higher fidelity simulation and deeper analytics. Quite rightly, they preach that simply quoting wonderful science is not enough justification (to the world outside of HPC) for these investments. This is where the Fort Knox types come in.

3. The Fort Knox type. It’s about the money to these people. They are driven by the big dollar deals, ideally, the high profit margin ones. They are reluctant to invest time in meetings, travel, projects, or acquisitions that don’t provide a substantial financial return this year. They often inhabit the parts of the ecosystem with better margins or with commercial applicability outside HPC (e.g. storage, networking, and so on) or sometimes can be found in those HPC vendors that keeping trying to discover a profitable business in selling solutions to buyers of technology with aggressive cost ambitions.

They are among the sharpest dressers, the most ardent advocates of their piece of the ecosystem, and get the least passionate interest from the buyers and users of supercomputers. Money and supercomputing always have been strange partners. Clearly, money, and lots of it, is required to fund the development, deployment, and operation of supercomputers and their enabling technologies (e.g. software).

But with such a technically dominated population of inhabitants, the HPC space often struggles to focus on this harsh reality. If companies can’t make money, or we can’t persuade politicians (and, by extension, the general public) to invest, then the R&D that is the lifeblood feeding the future of our world will weaken.

Likewise, the need to prove the economic return on investments in HPC services (both hardware and software) in commercial and academic/national lab spaces cannot be forgotten. The Fort Knox types have a crucial role to play in ensuring HPC continues to sustainably deliver its great potential. But the focus on money must balance with the pursuit of the technical race without which supercomputing would be meaningless.

4. The Art Gallery type. Keen to assure you as early as possible in the conversation that they are not technical – they leave technical detail to other people. Presenting a front of pride in their non-technical status, these people are usually, but not always, sales or business management people. However, a chink in their psyche appears, when they almost immediately follow up and make sure you know they once wrote some code.

Thus, they probably do recognize the integral value of technical understanding in the HPC world. But, either they are nervous about their lack of understanding (don’t be – not everyone is an expert – just be willing!) or they are hoping their stance will come across as above the detail (not good – this is often a detail game). And, in reality, the world of HPC is marked by significant technical expertise in so many of the people in sales positions, senior management or other traditionally business focused roles.

But there are also many who are not experts (or maybe aren’t anymore) but who have enough technology or science understanding to play their part in the ecosystem. Be proud of the technical knowledge you do have, honestly admit its limits, and be keen to learn more as needed. But then, you could say that about any skill, not just HPC.

5. The Horse-drawn Cart type.I remember when …” This person is able to turn any conversation about next year’s technology or this week’s implementation issue into a prolonged reminiscence of their distant childhood making supercomputers out of wooden sticks and spittle. Filled with “we tried that years ago,” “we had it much harder,” or “we should go back to the way we used to do it,” these monologues eventually stall as the polite but glazed expressions cemented on the faces around the room slowly reveal the audience has departed to mind-wandering land.

Occasionally, these reminiscences take a life of their own as dialogue springs forth – yes, those dreaded occasions when there is more than one Horse-drawn Cart type in the room. Sometimes, there are gems of insight relevant to the present or future to be found in these experiences though. The key to finding the gems is distinguishing the Horse-drawn Cart types from the Concorde types.

6. The Concorde type. Now that it is no longer flying the world with brutal performance and elegant class, this marvel of engineering brilliance and commercial application is distressingly easily seeping away from our memory. I’m writing this article sat in one of the other flagships of aviation, the Boeing 747, as I cross the Atlantic on my way to Salt Lake City for SC12 (there are about a dozen other HPC people just within a few rows of me).

But, much as I appreciate the 747 as probably the elder statesman of the skies, I wish the Concorde was still flying. Not that I’d expect to ride in it; it’s out of my league. But it is a shame that we have thrown away such a monumental capability: the 3 hour transatlantic crossing. That is a different class of interchange between London and New York than the current journey of a whole day’s flying.

More amazing still was that it was essentially 1960s technology. And this is my link to supercomputing. Some great technological achievements have peppered the history of supercomputing – processors, systems, algorithms, software implementations, etc. Many of them have been overtaken by subsequent products or technology shifts, but many we still rely on directly or via their evolutionary successors.  And, supercomputing too, is judged on the capability it enables, not merely the engineering brilliance of the technology implementation.

And the people part? Well, people made those great supercomputing technology advances. Some are sadly gone, many are still with us. In the fullness of the modern HPC ecosystem it is easy to let the impact of those technological leaps and their creators seep from our memory. Don’t.

So there you go – a selective stereotyping of the people that make supercomputing the marvel that we know – so powerful in its impact, often frustrating in its reality, usually addictive to those who encounter it, but always special. And, hopefully a few serious points about our community have been highlighted along the way. How many of these types did you see at SC12 this week? What types have I missed? Which, if any, are you?

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Officials, scientists and other stakeholders celebrated the new sy Read more…

By Staff report

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Indiana University Researchers Use Supercomputing to Model the State’s Largest Watershed

February 20, 2020

With water stressors on the rise, understanding and protecting water supplies is more important than ever. Now, a team of researchers from Indiana University has created a new climate change data portal to help Indianans Read more…

By Staff report

TACC – Supporting Portable, Reproducible, Computational Science with Containers

February 20, 2020

Researchers who use supercomputers for science typically don't limit themselves to one system. They move their projects to whatever resources are available, often using many different systems simultaneously, in their lab Read more…

By Aaron Dubrow

China Researchers Set Distance Record in Quantum Memory Entanglement

February 20, 2020

Efforts to develop the necessary capabilities for building a practical ‘quantum-based’ internet have been ongoing for years. One of the biggest challenges is being able to maintain and manage entanglement of remote q Read more…

By John Russell

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

New Algorithm Allows PCs to Challenge HPC in Weather Forecasting

February 19, 2020

Accurate weather forecasting has, by and large, been situated squarely in the domain of high-performance computing – just this week, the UK announced a nearly $1.6 billion investment in the world’s largest supercompu Read more…

By Oliver Peckham

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Japan’s AIST Benchmarks Intel Optane; Cites Benefit for HPC and AI

February 19, 2020

Last April Intel released its Optane Data Center Persistent Memory Module (DCPMM) – byte addressable nonvolatile memory – to increase main memory capacity a Read more…

By John Russell

UK Announces £1.2 Billion Weather and Climate Supercomputer

February 19, 2020

While the planet is heating up, so is the race for global leadership in weather and climate computing. In a bombshell announcement, the UK government revealed p Read more…

By Oliver Peckham

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or Read more…

By Oliver Peckham

Eni to Retake Industry HPC Crown with Launch of HPC5

February 12, 2020

With the launch of its Dell-built HPC5 system, Italian energy company Eni regains its position atop the industrial supercomputing leaderboard. At 52-petaflops p Read more…

By Tiffany Trader

Trump Budget Proposal Again Slashes Science Spending

February 11, 2020

President Donald Trump’s FY2021 U.S. Budget, submitted to Congress this week, again slashes science spending. It’s a $4.8 trillion statement of priorities, Read more…

By John Russell

Policy: Republicans Eye Bigger Science Budgets; NSF Celebrates 70th, Names Idea Machine Winners

February 5, 2020

It’s a busy week for science policy. Yesterday, the National Science Foundation announced winners of its 2026 Idea Machine contest seeking directions for futu Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This