The Six Personalities of Supercomputing

By Andrew Jones

November 16, 2012

There are two types of people in supercomputing – people that have a top 10 supercomputer and people that don’t. Or people who understand the exascale problem and people who understand the missing middle problem. Or people who have scalable applications and people that don’t.

Or people who claim just two types of person and then list several non-exclusive options.

In my usual part serious, part provocative style, here is my light-hearted look at the different personality stereotypes involved in high performance computing. This is by no means an exclusive list, but it does illustrate the range of people who contribute to the flavor of the world of supercomputing.

1. The Great Wall of China type.Our supercomputer is so big you can see it from outer space!” To these people, the size of the supercomputer is the primary factor determining standing in the supercomputing world. They’ll talk to you if your supercomputer can be seen from low orbit, will feel sorry for you if your machine is only visible from low flying aircraft, and refuse to acknowledge your relevance if your system is only visible from the ground.

Now, in no way am I suggesting that the size of a supercomputer is not important. Almost self-evidently it is. A more powerful supercomputer can enable more realistic simulations, new kinds of science enquiry, or more comprehensive data analytics.

And sometimes real breakthroughs do occur as a direct result of the scale of the supercomputer used. But smaller supercomputers, even ones not visible from altitude, also deliver cutting edge science, engineering and data analytics.

2. The Apocalypse type. These people are convinced the end of supercomputing is at hand. Most of them focus on the technology challenges that seemingly erect impassable barriers to our progress. Exascale can’t happen because of power. And even if we could afford the power, we wouldn’t be able to program it. And even then, the system/application would collapse in a statistically inevitable heap of errors after a few minutes. Not to mention the skills shortage. We may as well give up now and just keep deploying the systems we have now.

Then there are the ones who proclaim that doom is not technological; it is political and financial. They argue that we cannot sustain the increasing budgets at the national lab scale, nor will senior managers in research-led businesses fund the increasing demand for supercomputer technology to enable higher fidelity simulation and deeper analytics. Quite rightly, they preach that simply quoting wonderful science is not enough justification (to the world outside of HPC) for these investments. This is where the Fort Knox types come in.

3. The Fort Knox type. It’s about the money to these people. They are driven by the big dollar deals, ideally, the high profit margin ones. They are reluctant to invest time in meetings, travel, projects, or acquisitions that don’t provide a substantial financial return this year. They often inhabit the parts of the ecosystem with better margins or with commercial applicability outside HPC (e.g. storage, networking, and so on) or sometimes can be found in those HPC vendors that keeping trying to discover a profitable business in selling solutions to buyers of technology with aggressive cost ambitions.

They are among the sharpest dressers, the most ardent advocates of their piece of the ecosystem, and get the least passionate interest from the buyers and users of supercomputers. Money and supercomputing always have been strange partners. Clearly, money, and lots of it, is required to fund the development, deployment, and operation of supercomputers and their enabling technologies (e.g. software).

But with such a technically dominated population of inhabitants, the HPC space often struggles to focus on this harsh reality. If companies can’t make money, or we can’t persuade politicians (and, by extension, the general public) to invest, then the R&D that is the lifeblood feeding the future of our world will weaken.

Likewise, the need to prove the economic return on investments in HPC services (both hardware and software) in commercial and academic/national lab spaces cannot be forgotten. The Fort Knox types have a crucial role to play in ensuring HPC continues to sustainably deliver its great potential. But the focus on money must balance with the pursuit of the technical race without which supercomputing would be meaningless.

4. The Art Gallery type. Keen to assure you as early as possible in the conversation that they are not technical – they leave technical detail to other people. Presenting a front of pride in their non-technical status, these people are usually, but not always, sales or business management people. However, a chink in their psyche appears, when they almost immediately follow up and make sure you know they once wrote some code.

Thus, they probably do recognize the integral value of technical understanding in the HPC world. But, either they are nervous about their lack of understanding (don’t be – not everyone is an expert – just be willing!) or they are hoping their stance will come across as above the detail (not good – this is often a detail game). And, in reality, the world of HPC is marked by significant technical expertise in so many of the people in sales positions, senior management or other traditionally business focused roles.

But there are also many who are not experts (or maybe aren’t anymore) but who have enough technology or science understanding to play their part in the ecosystem. Be proud of the technical knowledge you do have, honestly admit its limits, and be keen to learn more as needed. But then, you could say that about any skill, not just HPC.

5. The Horse-drawn Cart type.I remember when …” This person is able to turn any conversation about next year’s technology or this week’s implementation issue into a prolonged reminiscence of their distant childhood making supercomputers out of wooden sticks and spittle. Filled with “we tried that years ago,” “we had it much harder,” or “we should go back to the way we used to do it,” these monologues eventually stall as the polite but glazed expressions cemented on the faces around the room slowly reveal the audience has departed to mind-wandering land.

Occasionally, these reminiscences take a life of their own as dialogue springs forth – yes, those dreaded occasions when there is more than one Horse-drawn Cart type in the room. Sometimes, there are gems of insight relevant to the present or future to be found in these experiences though. The key to finding the gems is distinguishing the Horse-drawn Cart types from the Concorde types.

6. The Concorde type. Now that it is no longer flying the world with brutal performance and elegant class, this marvel of engineering brilliance and commercial application is distressingly easily seeping away from our memory. I’m writing this article sat in one of the other flagships of aviation, the Boeing 747, as I cross the Atlantic on my way to Salt Lake City for SC12 (there are about a dozen other HPC people just within a few rows of me).

But, much as I appreciate the 747 as probably the elder statesman of the skies, I wish the Concorde was still flying. Not that I’d expect to ride in it; it’s out of my league. But it is a shame that we have thrown away such a monumental capability: the 3 hour transatlantic crossing. That is a different class of interchange between London and New York than the current journey of a whole day’s flying.

More amazing still was that it was essentially 1960s technology. And this is my link to supercomputing. Some great technological achievements have peppered the history of supercomputing – processors, systems, algorithms, software implementations, etc. Many of them have been overtaken by subsequent products or technology shifts, but many we still rely on directly or via their evolutionary successors.  And, supercomputing too, is judged on the capability it enables, not merely the engineering brilliance of the technology implementation.

And the people part? Well, people made those great supercomputing technology advances. Some are sadly gone, many are still with us. In the fullness of the modern HPC ecosystem it is easy to let the impact of those technological leaps and their creators seep from our memory. Don’t.

So there you go – a selective stereotyping of the people that make supercomputing the marvel that we know – so powerful in its impact, often frustrating in its reality, usually addictive to those who encounter it, but always special. And, hopefully a few serious points about our community have been highlighted along the way. How many of these types did you see at SC12 this week? What types have I missed? Which, if any, are you?

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This