Convey Cooks Personality into New MX Line

By Nicole Hemsoth

November 21, 2012

Last week at SC12 in Salt Lake City, Convey Computer pulled the lid off its MX big data-driven architecture designed to shine against graph analytics problems, which were at the heart of the show’s unmistakable data-intensive computing thrust this year.

The phrase high performance computing was, without surprise, found everywhere last week. However, increasingly, we were seeing another moniker pop up with far more frequency—high performance analytics. While SAS was first to game in snapping up the term for its own in-memory analytics push, everyone from IDC to IBM and now Convey is snatching up the catch-all umbrella name for big data power.

For Convey’s CEO, Bruce Toal, high performance analytics refers to the use of advanced, power-conscious and performance-optimized systems for unclogging programmatic and system-centered issues to perform against graph-type problems. These aren’t just found in internet search and Web 2.0 use cases, either. Toal told us that bioinformatics, fraud detection pros and government agencies have all found cause to explore this emerging class of problems—and so too have the powers that be at SC events where the Graph 500 ranking of data-intensive systems have been drawing ever-larger crowds.

The company’s Graph 500 showpiece features the capability to run tens of thousands of threads of execution coupled with what they call a “smart memory system” that can atomically perform in-memory calculations. Backed with the claim that it can scale to 32 terabytes of physical memory, Convey says the MX Series can exploit massive degrees of parallelism while efficiently handling hard-to-partition algorithms. 

During an extended sit-down at the show, we talked about why his mantra of “smarter computing for better analytics” goes far beyond a catchy marketing phrase, especially for those who have graph problems that they’re working against a traditional cluster paradigm.

The problem with price, power and performance are exaggerated for data-intensive applications if you’re looking at solving those on a high performance cluster, explained Toal. He pointed at various systems on the TOP500 and the Graph 500 as representative of the advantages of purpose-built data-intensive architectures over even the most efficient cluster computing systems.

For example, as you can see in the graphic below, for the growing breed of graph-based problems, it’s hard to rationalize the power and price investments in a system like TACC’s Dell cluster, which weighs in at 512 nodes and 6,000-plus cores—but 8 billion versus 15 billion edges per second. That aside, we’re talking about a $12 million system that burns through an estimated 358 kilowatts.


On the flip side, he says that Convey’s new big data approach is stuffed with memory, consumes less than 1,000 watts of power and runs less than $100K while hitting the 15 billion mark in terms of traversed edges per second (gigateps). Others in the same ballpark and with similar architectures, including Cray’s XMT, are in the 11 billion gigateps range. Further, he told us that for both standard cluster systems and the data-intensive focused systems, the reduction in power and floorspace alone is an attractive element.

At the heart of the company’s approach to solving big data analytics, power and performance problems is the mighty FPGA, which Toal claims addresses the tricky switching needs of data-intensive applications. Throw in an OpenMP-based programming environment and some “personality” and Convey can claim to have cooked up something worth a closer look.

Toal said that the mission was to speed graph analytics, specifically, while leveraging momentum in the x86 ecosystem via their partnerships with Intel and FPGA slinger Xilinx. He said that by integrating their hybrid-core approach to that environment by sharing memory let them build a system that could be reconfigurable and reprogrammable on the fly, allowing Convey to assign various “personalities” that are fine-tuned to specific application areas.

For instance, on the bioinformatics front, there are a lot of wasted parts in the computation that led to gross inefficiencies and performance bottlenecks, all of which can be solved through stripping and refining subtle system elements. To put that in context, when working with genetic sequencing, there are a total of four nucleotides that make up the keys to DNA. These nucleotides can be represented in 2 bits, so when doing 2-bit arithmetic on a 64-bit architecture, there’s significant waste that can be tidied up nicely with some personality that’s designed around the relatively small 2-bit need. By tailoring how the system chews out 2-bit operations to put the DNA puzzle pieces together, they can eek some extra performance, and thereby efficiency.

Another of Convey’s multiple personalities bears a government cryptographics face. In this case, the problem lies in efficient pattern-matching, whereas with basic graph analytics—the same type used to evaluate the top performers on the Graph 500 charts—it’s all about pointer-chasing where one node points to another, showcasing the ability of the FPGA approach in keeping pace.

“Part of the power of our architecture is that we built a memory system that lets you jump between different points in memory very efficiently. We call this scatter-gather so instead of getting a whole cache line, you get the piece in memory you’re looking for.”

Despite his claim to superiority, Toal was liberal in his praise for what Cray’s been working on with its XMT architecture and uRiKA graph appliance. He says what’s unique about the MX100, however, is that the memory system on the coprocessor is the backbone for that scatter-gather capability so highly prized in big graph analytics. He described the atomic memory operators, which are not so unlike the XMT’s which leverage tag bits to allow fine-grained synchronization down to every 64-bit word, leaving an extra bit that allows a lock—an aspect that is critical when you’re doing thousands of threads that are all trying to work on the same data.

More specifically, Toal explained the personality in the context of the overall programming environment, which is designed to wick away some of the nasty tangles of working with FPGAs, dealing with lock bits and messing extensively with scheduling headaches.

“We have a personality that’s loaded in that’s a multiple instruction, multiple-data personality framework,” said Toal. “Each one of the little thread units has a simple RISC-like instruction set and uses lock bits for synchronization—with the whole idea being to provide low latency.” Further, all the thread scheduling is done in hardware instead of the operating system software.

So, for example, when you spawn 10 threads to start working independently, when one is thread is finished and you want to switch to another thread on that core, the operating system usually gets involved, which is at the thousand-plus thread level, creates some serious scalability walls. “We built it into the personality in hardware so it’s fast and efficient so when a thread is stalled, it automatically gets swapped out by the personality,” Toal explained.

Another important component to the architecture is the OpenMP angle, which they’ve implemented in the MX’s low-level runtime routines to let users go from single-node to parallel performance with a simple pragma. Toal insists it’s as easy as taking a multithreaded application, running it through their OpenMP-flavored library, and having it run their instruction set on the hardware instead of in the operating system software.

In general, Toal feels that the types of problems that are being addressed by the broader-use Hadoop use cases that abound and approaches like his own and Cray’s is that they want to get an edge on the hyper-advanced real-time analytics workloads.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC-as-a-Service Finds Toehold in Iceland

December 11, 2017

While high-demand workloads (e.g., bitcoin mining) can overheat data center cooling capabilities, at least one data center infrastructure provider has announced an HPC-as-a-service offering that features 100 percent fre Read more…

By Doug Black

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be carefully woven together by people to create the computational c Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit and Sierra. The new AC922 server pairs two Power9 CPUs with f Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

PEZY President Arrested, Charged with Fraud

December 6, 2017

The head of Japanese supercomputing firm PEZY Computing was arrested Tuesday on suspicion of defrauding a government institution of 431 million yen (~$3.8 million). According to reports in the Japanese press, PEZY founde Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition. We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks. Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

SC Bids Farewell to Denver, Heads to Dallas for 30th Anniversary

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Share This