Convey Cooks Personality into New MX Line

By Nicole Hemsoth

November 21, 2012

Last week at SC12 in Salt Lake City, Convey Computer pulled the lid off its MX big data-driven architecture designed to shine against graph analytics problems, which were at the heart of the show’s unmistakable data-intensive computing thrust this year.

The phrase high performance computing was, without surprise, found everywhere last week. However, increasingly, we were seeing another moniker pop up with far more frequency—high performance analytics. While SAS was first to game in snapping up the term for its own in-memory analytics push, everyone from IDC to IBM and now Convey is snatching up the catch-all umbrella name for big data power.

For Convey’s CEO, Bruce Toal, high performance analytics refers to the use of advanced, power-conscious and performance-optimized systems for unclogging programmatic and system-centered issues to perform against graph-type problems. These aren’t just found in internet search and Web 2.0 use cases, either. Toal told us that bioinformatics, fraud detection pros and government agencies have all found cause to explore this emerging class of problems—and so too have the powers that be at SC events where the Graph 500 ranking of data-intensive systems have been drawing ever-larger crowds.

The company’s Graph 500 showpiece features the capability to run tens of thousands of threads of execution coupled with what they call a “smart memory system” that can atomically perform in-memory calculations. Backed with the claim that it can scale to 32 terabytes of physical memory, Convey says the MX Series can exploit massive degrees of parallelism while efficiently handling hard-to-partition algorithms. 

During an extended sit-down at the show, we talked about why his mantra of “smarter computing for better analytics” goes far beyond a catchy marketing phrase, especially for those who have graph problems that they’re working against a traditional cluster paradigm.

The problem with price, power and performance are exaggerated for data-intensive applications if you’re looking at solving those on a high performance cluster, explained Toal. He pointed at various systems on the TOP500 and the Graph 500 as representative of the advantages of purpose-built data-intensive architectures over even the most efficient cluster computing systems.

For example, as you can see in the graphic below, for the growing breed of graph-based problems, it’s hard to rationalize the power and price investments in a system like TACC’s Dell cluster, which weighs in at 512 nodes and 6,000-plus cores—but 8 billion versus 15 billion edges per second. That aside, we’re talking about a $12 million system that burns through an estimated 358 kilowatts.


On the flip side, he says that Convey’s new big data approach is stuffed with memory, consumes less than 1,000 watts of power and runs less than $100K while hitting the 15 billion mark in terms of traversed edges per second (gigateps). Others in the same ballpark and with similar architectures, including Cray’s XMT, are in the 11 billion gigateps range. Further, he told us that for both standard cluster systems and the data-intensive focused systems, the reduction in power and floorspace alone is an attractive element.

At the heart of the company’s approach to solving big data analytics, power and performance problems is the mighty FPGA, which Toal claims addresses the tricky switching needs of data-intensive applications. Throw in an OpenMP-based programming environment and some “personality” and Convey can claim to have cooked up something worth a closer look.

Toal said that the mission was to speed graph analytics, specifically, while leveraging momentum in the x86 ecosystem via their partnerships with Intel and FPGA slinger Xilinx. He said that by integrating their hybrid-core approach to that environment by sharing memory let them build a system that could be reconfigurable and reprogrammable on the fly, allowing Convey to assign various “personalities” that are fine-tuned to specific application areas.

For instance, on the bioinformatics front, there are a lot of wasted parts in the computation that led to gross inefficiencies and performance bottlenecks, all of which can be solved through stripping and refining subtle system elements. To put that in context, when working with genetic sequencing, there are a total of four nucleotides that make up the keys to DNA. These nucleotides can be represented in 2 bits, so when doing 2-bit arithmetic on a 64-bit architecture, there’s significant waste that can be tidied up nicely with some personality that’s designed around the relatively small 2-bit need. By tailoring how the system chews out 2-bit operations to put the DNA puzzle pieces together, they can eek some extra performance, and thereby efficiency.

Another of Convey’s multiple personalities bears a government cryptographics face. In this case, the problem lies in efficient pattern-matching, whereas with basic graph analytics—the same type used to evaluate the top performers on the Graph 500 charts—it’s all about pointer-chasing where one node points to another, showcasing the ability of the FPGA approach in keeping pace.

“Part of the power of our architecture is that we built a memory system that lets you jump between different points in memory very efficiently. We call this scatter-gather so instead of getting a whole cache line, you get the piece in memory you’re looking for.”

Despite his claim to superiority, Toal was liberal in his praise for what Cray’s been working on with its XMT architecture and uRiKA graph appliance. He says what’s unique about the MX100, however, is that the memory system on the coprocessor is the backbone for that scatter-gather capability so highly prized in big graph analytics. He described the atomic memory operators, which are not so unlike the XMT’s which leverage tag bits to allow fine-grained synchronization down to every 64-bit word, leaving an extra bit that allows a lock—an aspect that is critical when you’re doing thousands of threads that are all trying to work on the same data.

More specifically, Toal explained the personality in the context of the overall programming environment, which is designed to wick away some of the nasty tangles of working with FPGAs, dealing with lock bits and messing extensively with scheduling headaches.

“We have a personality that’s loaded in that’s a multiple instruction, multiple-data personality framework,” said Toal. “Each one of the little thread units has a simple RISC-like instruction set and uses lock bits for synchronization—with the whole idea being to provide low latency.” Further, all the thread scheduling is done in hardware instead of the operating system software.

So, for example, when you spawn 10 threads to start working independently, when one is thread is finished and you want to switch to another thread on that core, the operating system usually gets involved, which is at the thousand-plus thread level, creates some serious scalability walls. “We built it into the personality in hardware so it’s fast and efficient so when a thread is stalled, it automatically gets swapped out by the personality,” Toal explained.

Another important component to the architecture is the OpenMP angle, which they’ve implemented in the MX’s low-level runtime routines to let users go from single-node to parallel performance with a simple pragma. Toal insists it’s as easy as taking a multithreaded application, running it through their OpenMP-flavored library, and having it run their instruction set on the hardware instead of in the operating system software.

In general, Toal feels that the types of problems that are being addressed by the broader-use Hadoop use cases that abound and approaches like his own and Cray’s is that they want to get an edge on the hyper-advanced real-time analytics workloads.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This