Convey Cooks Personality into New MX Line

By Nicole Hemsoth

November 21, 2012

Last week at SC12 in Salt Lake City, Convey Computer pulled the lid off its MX big data-driven architecture designed to shine against graph analytics problems, which were at the heart of the show’s unmistakable data-intensive computing thrust this year.

The phrase high performance computing was, without surprise, found everywhere last week. However, increasingly, we were seeing another moniker pop up with far more frequency—high performance analytics. While SAS was first to game in snapping up the term for its own in-memory analytics push, everyone from IDC to IBM and now Convey is snatching up the catch-all umbrella name for big data power.

For Convey’s CEO, Bruce Toal, high performance analytics refers to the use of advanced, power-conscious and performance-optimized systems for unclogging programmatic and system-centered issues to perform against graph-type problems. These aren’t just found in internet search and Web 2.0 use cases, either. Toal told us that bioinformatics, fraud detection pros and government agencies have all found cause to explore this emerging class of problems—and so too have the powers that be at SC events where the Graph 500 ranking of data-intensive systems have been drawing ever-larger crowds.

The company’s Graph 500 showpiece features the capability to run tens of thousands of threads of execution coupled with what they call a “smart memory system” that can atomically perform in-memory calculations. Backed with the claim that it can scale to 32 terabytes of physical memory, Convey says the MX Series can exploit massive degrees of parallelism while efficiently handling hard-to-partition algorithms. 

During an extended sit-down at the show, we talked about why his mantra of “smarter computing for better analytics” goes far beyond a catchy marketing phrase, especially for those who have graph problems that they’re working against a traditional cluster paradigm.

The problem with price, power and performance are exaggerated for data-intensive applications if you’re looking at solving those on a high performance cluster, explained Toal. He pointed at various systems on the TOP500 and the Graph 500 as representative of the advantages of purpose-built data-intensive architectures over even the most efficient cluster computing systems.

For example, as you can see in the graphic below, for the growing breed of graph-based problems, it’s hard to rationalize the power and price investments in a system like TACC’s Dell cluster, which weighs in at 512 nodes and 6,000-plus cores—but 8 billion versus 15 billion edges per second. That aside, we’re talking about a $12 million system that burns through an estimated 358 kilowatts.


On the flip side, he says that Convey’s new big data approach is stuffed with memory, consumes less than 1,000 watts of power and runs less than $100K while hitting the 15 billion mark in terms of traversed edges per second (gigateps). Others in the same ballpark and with similar architectures, including Cray’s XMT, are in the 11 billion gigateps range. Further, he told us that for both standard cluster systems and the data-intensive focused systems, the reduction in power and floorspace alone is an attractive element.

At the heart of the company’s approach to solving big data analytics, power and performance problems is the mighty FPGA, which Toal claims addresses the tricky switching needs of data-intensive applications. Throw in an OpenMP-based programming environment and some “personality” and Convey can claim to have cooked up something worth a closer look.

Toal said that the mission was to speed graph analytics, specifically, while leveraging momentum in the x86 ecosystem via their partnerships with Intel and FPGA slinger Xilinx. He said that by integrating their hybrid-core approach to that environment by sharing memory let them build a system that could be reconfigurable and reprogrammable on the fly, allowing Convey to assign various “personalities” that are fine-tuned to specific application areas.

For instance, on the bioinformatics front, there are a lot of wasted parts in the computation that led to gross inefficiencies and performance bottlenecks, all of which can be solved through stripping and refining subtle system elements. To put that in context, when working with genetic sequencing, there are a total of four nucleotides that make up the keys to DNA. These nucleotides can be represented in 2 bits, so when doing 2-bit arithmetic on a 64-bit architecture, there’s significant waste that can be tidied up nicely with some personality that’s designed around the relatively small 2-bit need. By tailoring how the system chews out 2-bit operations to put the DNA puzzle pieces together, they can eek some extra performance, and thereby efficiency.

Another of Convey’s multiple personalities bears a government cryptographics face. In this case, the problem lies in efficient pattern-matching, whereas with basic graph analytics—the same type used to evaluate the top performers on the Graph 500 charts—it’s all about pointer-chasing where one node points to another, showcasing the ability of the FPGA approach in keeping pace.

“Part of the power of our architecture is that we built a memory system that lets you jump between different points in memory very efficiently. We call this scatter-gather so instead of getting a whole cache line, you get the piece in memory you’re looking for.”

Despite his claim to superiority, Toal was liberal in his praise for what Cray’s been working on with its XMT architecture and uRiKA graph appliance. He says what’s unique about the MX100, however, is that the memory system on the coprocessor is the backbone for that scatter-gather capability so highly prized in big graph analytics. He described the atomic memory operators, which are not so unlike the XMT’s which leverage tag bits to allow fine-grained synchronization down to every 64-bit word, leaving an extra bit that allows a lock—an aspect that is critical when you’re doing thousands of threads that are all trying to work on the same data.

More specifically, Toal explained the personality in the context of the overall programming environment, which is designed to wick away some of the nasty tangles of working with FPGAs, dealing with lock bits and messing extensively with scheduling headaches.

“We have a personality that’s loaded in that’s a multiple instruction, multiple-data personality framework,” said Toal. “Each one of the little thread units has a simple RISC-like instruction set and uses lock bits for synchronization—with the whole idea being to provide low latency.” Further, all the thread scheduling is done in hardware instead of the operating system software.

So, for example, when you spawn 10 threads to start working independently, when one is thread is finished and you want to switch to another thread on that core, the operating system usually gets involved, which is at the thousand-plus thread level, creates some serious scalability walls. “We built it into the personality in hardware so it’s fast and efficient so when a thread is stalled, it automatically gets swapped out by the personality,” Toal explained.

Another important component to the architecture is the OpenMP angle, which they’ve implemented in the MX’s low-level runtime routines to let users go from single-node to parallel performance with a simple pragma. Toal insists it’s as easy as taking a multithreaded application, running it through their OpenMP-flavored library, and having it run their instruction set on the hardware instead of in the operating system software.

In general, Toal feels that the types of problems that are being addressed by the broader-use Hadoop use cases that abound and approaches like his own and Cray’s is that they want to get an edge on the hyper-advanced real-time analytics workloads.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This