Convey Cooks Personality into New MX Line

By Nicole Hemsoth

November 21, 2012

Last week at SC12 in Salt Lake City, Convey Computer pulled the lid off its MX big data-driven architecture designed to shine against graph analytics problems, which were at the heart of the show’s unmistakable data-intensive computing thrust this year.

The phrase high performance computing was, without surprise, found everywhere last week. However, increasingly, we were seeing another moniker pop up with far more frequency—high performance analytics. While SAS was first to game in snapping up the term for its own in-memory analytics push, everyone from IDC to IBM and now Convey is snatching up the catch-all umbrella name for big data power.

For Convey’s CEO, Bruce Toal, high performance analytics refers to the use of advanced, power-conscious and performance-optimized systems for unclogging programmatic and system-centered issues to perform against graph-type problems. These aren’t just found in internet search and Web 2.0 use cases, either. Toal told us that bioinformatics, fraud detection pros and government agencies have all found cause to explore this emerging class of problems—and so too have the powers that be at SC events where the Graph 500 ranking of data-intensive systems have been drawing ever-larger crowds.

The company’s Graph 500 showpiece features the capability to run tens of thousands of threads of execution coupled with what they call a “smart memory system” that can atomically perform in-memory calculations. Backed with the claim that it can scale to 32 terabytes of physical memory, Convey says the MX Series can exploit massive degrees of parallelism while efficiently handling hard-to-partition algorithms. 

During an extended sit-down at the show, we talked about why his mantra of “smarter computing for better analytics” goes far beyond a catchy marketing phrase, especially for those who have graph problems that they’re working against a traditional cluster paradigm.

The problem with price, power and performance are exaggerated for data-intensive applications if you’re looking at solving those on a high performance cluster, explained Toal. He pointed at various systems on the TOP500 and the Graph 500 as representative of the advantages of purpose-built data-intensive architectures over even the most efficient cluster computing systems.

For example, as you can see in the graphic below, for the growing breed of graph-based problems, it’s hard to rationalize the power and price investments in a system like TACC’s Dell cluster, which weighs in at 512 nodes and 6,000-plus cores—but 8 billion versus 15 billion edges per second. That aside, we’re talking about a $12 million system that burns through an estimated 358 kilowatts.


On the flip side, he says that Convey’s new big data approach is stuffed with memory, consumes less than 1,000 watts of power and runs less than $100K while hitting the 15 billion mark in terms of traversed edges per second (gigateps). Others in the same ballpark and with similar architectures, including Cray’s XMT, are in the 11 billion gigateps range. Further, he told us that for both standard cluster systems and the data-intensive focused systems, the reduction in power and floorspace alone is an attractive element.

At the heart of the company’s approach to solving big data analytics, power and performance problems is the mighty FPGA, which Toal claims addresses the tricky switching needs of data-intensive applications. Throw in an OpenMP-based programming environment and some “personality” and Convey can claim to have cooked up something worth a closer look.

Toal said that the mission was to speed graph analytics, specifically, while leveraging momentum in the x86 ecosystem via their partnerships with Intel and FPGA slinger Xilinx. He said that by integrating their hybrid-core approach to that environment by sharing memory let them build a system that could be reconfigurable and reprogrammable on the fly, allowing Convey to assign various “personalities” that are fine-tuned to specific application areas.

For instance, on the bioinformatics front, there are a lot of wasted parts in the computation that led to gross inefficiencies and performance bottlenecks, all of which can be solved through stripping and refining subtle system elements. To put that in context, when working with genetic sequencing, there are a total of four nucleotides that make up the keys to DNA. These nucleotides can be represented in 2 bits, so when doing 2-bit arithmetic on a 64-bit architecture, there’s significant waste that can be tidied up nicely with some personality that’s designed around the relatively small 2-bit need. By tailoring how the system chews out 2-bit operations to put the DNA puzzle pieces together, they can eek some extra performance, and thereby efficiency.

Another of Convey’s multiple personalities bears a government cryptographics face. In this case, the problem lies in efficient pattern-matching, whereas with basic graph analytics—the same type used to evaluate the top performers on the Graph 500 charts—it’s all about pointer-chasing where one node points to another, showcasing the ability of the FPGA approach in keeping pace.

“Part of the power of our architecture is that we built a memory system that lets you jump between different points in memory very efficiently. We call this scatter-gather so instead of getting a whole cache line, you get the piece in memory you’re looking for.”

Despite his claim to superiority, Toal was liberal in his praise for what Cray’s been working on with its XMT architecture and uRiKA graph appliance. He says what’s unique about the MX100, however, is that the memory system on the coprocessor is the backbone for that scatter-gather capability so highly prized in big graph analytics. He described the atomic memory operators, which are not so unlike the XMT’s which leverage tag bits to allow fine-grained synchronization down to every 64-bit word, leaving an extra bit that allows a lock—an aspect that is critical when you’re doing thousands of threads that are all trying to work on the same data.

More specifically, Toal explained the personality in the context of the overall programming environment, which is designed to wick away some of the nasty tangles of working with FPGAs, dealing with lock bits and messing extensively with scheduling headaches.

“We have a personality that’s loaded in that’s a multiple instruction, multiple-data personality framework,” said Toal. “Each one of the little thread units has a simple RISC-like instruction set and uses lock bits for synchronization—with the whole idea being to provide low latency.” Further, all the thread scheduling is done in hardware instead of the operating system software.

So, for example, when you spawn 10 threads to start working independently, when one is thread is finished and you want to switch to another thread on that core, the operating system usually gets involved, which is at the thousand-plus thread level, creates some serious scalability walls. “We built it into the personality in hardware so it’s fast and efficient so when a thread is stalled, it automatically gets swapped out by the personality,” Toal explained.

Another important component to the architecture is the OpenMP angle, which they’ve implemented in the MX’s low-level runtime routines to let users go from single-node to parallel performance with a simple pragma. Toal insists it’s as easy as taking a multithreaded application, running it through their OpenMP-flavored library, and having it run their instruction set on the hardware instead of in the operating system software.

In general, Toal feels that the types of problems that are being addressed by the broader-use Hadoop use cases that abound and approaches like his own and Cray’s is that they want to get an edge on the hyper-advanced real-time analytics workloads.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This