OpenMP Takes To Accelerated Computing

By Michael Feldman

November 27, 2012

OpenMP, the popular parallel programming standard for high performance computing, is about to come out with a new version incorporating a number of enhancements, the most significant one being support for HPC accelerators. Version 4.0 will include the functionality that was implemented in OpenACC, the accelerator API that splintered off from the OpenMP work, as well as offer additional support beyond that. The new standard is expected to become the the law of the land sometime in early 2013.

In high performance computing, OpenMP serves as the de facto parallel programming framework for shared memory environments — that is, code that shares a coherent memory space within a server node. Combined with MPI, which supports distributed parallelism across many nodes, the two standards provide the software foundation for most HPC applications.

Since the advent of multicore CPUs, and more recently attached accelerators like GPUs, parallelism at the node level has skyrocketed. While OpenMP has supported multicore processors for most of its 15-year history, support for accelerators is just now being folded in.

Some would say a little late. GPU computing has been around for six years, thanks mostly to the efforts of NVIDIA, which has spearheaded this new programming paradigm. In fact, the GPU maker’s early and mostly unchallenged entrance into HPC acceleration led to the emergence of a number of other parallel programming frameworks, including NVIDIA’s own CUDA software toolset, OpenCL, and more recently, OpenACC.

OpenACC is somewhat of a historical accident. Although the OpenMP accelerator work began a few years ago, at that time NVIDIA had the only credible products on the market, namely its Tesla GPU offerings. Customers of those products wanted a directives-based API for current development work that offered a higher level framework than either CUDA or OpenCL, and had at least some promise of hardware independence. At the time, it looked like that until Intel brought its Xeon Phi coprocessor to market there would be no OpenMP accelerator standard. So NVIDIA, along with Cray, and compiler-makers CAPS enterprise and The Portland Group Inc (PGI), developed OpenACC based on some of the initial OpenMP effort.

As a result of this common history, both OpenMP and OpenACC offer a directives based approach to parallel programming, and in the case of developing codes for accelerators, share many of the same capabilities. Intel senior scientist and OpenMP evangelist Tim Mattson says the emerging OpenMP accelerator standard is more or less a superset of the OpenACC API. According to him, porting an OpenACC code to OpenMP will be relatively easy. “Moving from OpenACC to the OpenMP directives as defined in the current Technical Report, is trivial,” says Mattson.

The Technical Report he refers to is the document released by the OpenMP Architecture Review Board (ARB) three weeks ago, the idea being to gather user and vendor feedback before incorporating the new directives into OpenMP 4.0. Assuming all goes as planned the final version of the accelerator directives will be slid into OpenMP 4.0 by the first quarter of 2013, first as a release candidate, and soon thereafter as an official standard. The new version will also have a number of other enhancements including thread affinity (enables users to define where to execute OpenMP threads) initial support for Fortran 2003, SIMD support (to vectorize serial and parallelized loops), user-defined reductions, and sequentially consistent atomics.

The Technical Report was a product of the ARB working group on accelerators, which included all four OpenACC backers. So it’s a given that GPUs will be well-supported in the OpenMP going forward. But since the working group also included x86 vendors Intel and AMD, DSP provider Texas Instruments, as well as hybrid computer-maker Convey, there is likely to be something in the new standard for everyone. The goal is to allow developers to write target-independent applications that can take advantage of the latest GPUs from NVIDIA and AMD, Intel’s Xeon Phi, FPGAs, and even the TI DSP chips. The directives are also designed to allow for future types of accelerators.

The trick is to design the compiler directives abstractly enough to hide the hardware dependencies for a diverse group of architectures, but not so ethereal so that it becomes impossible for compilers to generate efficient, performant code from them. Assuming the compiler implementations from Intel, PGI, CAPS, and others live up to that ideal, the developer community will likely gravitate toward the new OpenMP standard.

For the time being though, it’s business as usual for the OpenACC backers. A draft of version 2.0 was made public for comment at the recent Supercomputing Conference (SC12). In concert, both PGI and CAPS announced OpenACC compiler support for the latest accelerators — Intel’s Xeon Phi coprocessor, NVIDIA’s K20/K20X GPUs, AMD APUs and GPUs, and the ARM-based CARMA platform. For the near-term, at least, both OpenACC and OpenMP accelerator support looks like it will move forward in tandem.

How long that lasts is not clear. But given the propensity of both developers and software toolmakers to support monolithic standards, at some point the two frameworks should merge. “It’s now in our camp of OpenMP to bring it back together as one happy family,” says Mattson.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break “Speed Limit”

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Intel Ships Drives Based on 3-D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3-D XPoint non-volatile memory technology as it targets data-driven workloads. Read more…

By George Leopold

Researchers Recreate ‘El Reno’ Tornado on Blue Waters Supercomputer

March 16, 2017

The United States experiences more tornadoes than any other country. About 1,200 tornadoes touch down each each year in the U.S. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

AMD Expands Exascale Vision at IEEE HPC Symposium

March 7, 2017

With the race towards exascale heating up – for example, the Exascale Computing Program PathForward awards are expected soon – AMD delivered more details of its exascale vision at last month’s 23rd IEEE Symposium on High Performance Computer Architecture. The chipmaker presented an “Exascale Node Architecture (ENA) as the primary building block for exascale machine” including descriptions of component, interconnect, and packaging strategy along with simulation benchmarks to bolster its case. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This