OpenMP Takes To Accelerated Computing

By Michael Feldman

November 27, 2012

OpenMP, the popular parallel programming standard for high performance computing, is about to come out with a new version incorporating a number of enhancements, the most significant one being support for HPC accelerators. Version 4.0 will include the functionality that was implemented in OpenACC, the accelerator API that splintered off from the OpenMP work, as well as offer additional support beyond that. The new standard is expected to become the the law of the land sometime in early 2013.

In high performance computing, OpenMP serves as the de facto parallel programming framework for shared memory environments — that is, code that shares a coherent memory space within a server node. Combined with MPI, which supports distributed parallelism across many nodes, the two standards provide the software foundation for most HPC applications.

Since the advent of multicore CPUs, and more recently attached accelerators like GPUs, parallelism at the node level has skyrocketed. While OpenMP has supported multicore processors for most of its 15-year history, support for accelerators is just now being folded in.

Some would say a little late. GPU computing has been around for six years, thanks mostly to the efforts of NVIDIA, which has spearheaded this new programming paradigm. In fact, the GPU maker’s early and mostly unchallenged entrance into HPC acceleration led to the emergence of a number of other parallel programming frameworks, including NVIDIA’s own CUDA software toolset, OpenCL, and more recently, OpenACC.

OpenACC is somewhat of a historical accident. Although the OpenMP accelerator work began a few years ago, at that time NVIDIA had the only credible products on the market, namely its Tesla GPU offerings. Customers of those products wanted a directives-based API for current development work that offered a higher level framework than either CUDA or OpenCL, and had at least some promise of hardware independence. At the time, it looked like that until Intel brought its Xeon Phi coprocessor to market there would be no OpenMP accelerator standard. So NVIDIA, along with Cray, and compiler-makers CAPS enterprise and The Portland Group Inc (PGI), developed OpenACC based on some of the initial OpenMP effort.

As a result of this common history, both OpenMP and OpenACC offer a directives based approach to parallel programming, and in the case of developing codes for accelerators, share many of the same capabilities. Intel senior scientist and OpenMP evangelist Tim Mattson says the emerging OpenMP accelerator standard is more or less a superset of the OpenACC API. According to him, porting an OpenACC code to OpenMP will be relatively easy. “Moving from OpenACC to the OpenMP directives as defined in the current Technical Report, is trivial,” says Mattson.

The Technical Report he refers to is the document released by the OpenMP Architecture Review Board (ARB) three weeks ago, the idea being to gather user and vendor feedback before incorporating the new directives into OpenMP 4.0. Assuming all goes as planned the final version of the accelerator directives will be slid into OpenMP 4.0 by the first quarter of 2013, first as a release candidate, and soon thereafter as an official standard. The new version will also have a number of other enhancements including thread affinity (enables users to define where to execute OpenMP threads) initial support for Fortran 2003, SIMD support (to vectorize serial and parallelized loops), user-defined reductions, and sequentially consistent atomics.

The Technical Report was a product of the ARB working group on accelerators, which included all four OpenACC backers. So it’s a given that GPUs will be well-supported in the OpenMP going forward. But since the working group also included x86 vendors Intel and AMD, DSP provider Texas Instruments, as well as hybrid computer-maker Convey, there is likely to be something in the new standard for everyone. The goal is to allow developers to write target-independent applications that can take advantage of the latest GPUs from NVIDIA and AMD, Intel’s Xeon Phi, FPGAs, and even the TI DSP chips. The directives are also designed to allow for future types of accelerators.

The trick is to design the compiler directives abstractly enough to hide the hardware dependencies for a diverse group of architectures, but not so ethereal so that it becomes impossible for compilers to generate efficient, performant code from them. Assuming the compiler implementations from Intel, PGI, CAPS, and others live up to that ideal, the developer community will likely gravitate toward the new OpenMP standard.

For the time being though, it’s business as usual for the OpenACC backers. A draft of version 2.0 was made public for comment at the recent Supercomputing Conference (SC12). In concert, both PGI and CAPS announced OpenACC compiler support for the latest accelerators — Intel’s Xeon Phi coprocessor, NVIDIA’s K20/K20X GPUs, AMD APUs and GPUs, and the ARM-based CARMA platform. For the near-term, at least, both OpenACC and OpenMP accelerator support looks like it will move forward in tandem.

How long that lasts is not clear. But given the propensity of both developers and software toolmakers to support monolithic standards, at some point the two frameworks should merge. “It’s now in our camp of OpenMP to bring it back together as one happy family,” says Mattson.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This