The HPC Triple Crown

By Gary Johnson

November 28, 2012

The semi-annual HPC “500 list” time and its attendant fall iron horse racing season are upon us. Thanks to the hard work of the list keepers, we currently enjoy three major ones to review, compare and contrast: TOP500, Green500 and Graph 500. Each focuses on a distinct aspect of HPC – number crunching, energy efficiency, and data crunching, respectively – and together they allow us to construct our own type of Triple Crown. Since new race results were recently announced, let’s take a look at the current standings.

In racing with real horses, a Triple Crown consists of a series of three races for three-year-old thoroughbred horses. Winning all three of these races is considered to be the greatest accomplishment of a horse’s career. Various nations, where thoroughbred racing is popular, each have their own Triple Crown series. Since HPC is a global sport, we enjoy the simplicity of only having one Triple Crown: our three 500 lists – the TOP, Green and Graph 500s. How do our HPC iron horses do in competing to win this Triple Crown? Let’s review the past year’s races and then look at the Fall 2012 competition.

Last fall, strictly speaking, there was no Triple Crown winner. No single machine occupied the top spot on all three rankings, but Tsubame clearly was the best all-around performer. Of those machines competing in all three races, Tsubame ranked closest to the top overall (see Number Crunching, Data Crunching and Energy Efficiency: the HPC Hat Trick). To refresh your memories, there’s a graphic below depicting the outcome. Also, you may wish to consult the three lists – TOP500, Green500, and Graph 500 – to learn more about the machines behind the nicknames used here.

Note that three of the fall 2011 top five TOP500 computers were missing from the comparison: K Computer (#1), Tianhe-1A (#2), and Nebulae (#4). This was because they were not included in the Graph 500. However, because of the relatively low ranking of those three machines on the Green500, the outcome of the comparison was not affected.

As discussed in the previously cited article, the constraint on this three-way comparison was the population of the Graph 500 list. While there is essentially complete overlap and obvious mapping between TOP500 and Green500 machine entries, for the Graph 500 this is not the case. The Graph 500 list was and is a work in progress. The fall 2011 version contained only 49 distinct computers and did not provide any mapping of these to either the TOP500 or the Green500 list. Nonetheless, it was possible to locate at least 19 Graph 500 computers on the other two lists – the ones named in the graphic above.

It would be nice to have not only a winner of our semi-annual iron horse races, but also a Triple Crown winner as well. Perhaps there are alternative definitions of the competition that would improve the odds of this happening.

Suppose we considered both “individual” and “team” competitions and a couple of “winning” categories within each competition. For example:

Individual Triple Crown

Class A Winner: Specific machine in first place on all three lists

Class B Winner: Specific machine present on all three lists & highest average rank

So, the individual competition looks as one might expect, except we admit the possibility of a Class B winner, based on highest average rank across all three lists. This pretty much ensures an individual winner even if one machine doesn’t glean the top spot on every list. In the fall of 2011, Tsubame would have been the Class B winner.

For the team competition, suppose we looked not for a specific machine (for example, Hopper) to win but instead for a type of machine (such as the Cray XE6)? Then, since the most attention is paid to the top of the lists, we might define “winning” a particular race to be having the greatest number of that machine type in the top 10 on that list. We could also then form aggregate scores for the winners in each list race by summing across all three lists.

Team Triple Crown

Class A Winner: Machine type present in the top 10 on each list & highest aggregate score

Class B Winner: Machine type present in the top 10 on at least one list & highest aggregate score

If we review the fall 2011 500 lists using our new definitions, we find:

Individual Competition

Class A Winner: None

Class B Winner: Tsubame

The input data for the team competition are summarized in the table below. The maximum number of occurrences of a particular machine type in the top 10 for each 500 list is shown in red.

Table1

These data yield:

Team Competition

Class A Winner: Tsubame (a team with one member)

Class B Winner: IBM Blue Gene/Q

If you think that just looking at the top 10 spots on the 500 lists is too restrictive, then use your own cutoff or include the whole of each list. Designing the competition is a game anyone can play. We’ve chosen the top 10 because that part of the 500 lists seems to draw the most attention from the HPC community.

Let’s see how events played out in the summer 2012 races.

Here once again we see that the small population of the Graph 500 constrains the comparisons. To be sure, the list is expanding. The summer 2012 version contained 89 entries, which was almost twice as many as the previous list, but we were still only able to clearly identify 19 of them as being included in the other two lists. Using those 19, the comparisons are shown in the graphic below.

Individual Competition

Class A Winner: None

Class B Winner: Sequoia (by a nose over Mira)

Once again, the input data for the team competition are summarized in the yable below.

Table2

This data yields:

Team Competition

Class A Winner: IBM Blue Gene/Q

Class B Winner: IBM Blue Gene/Q

The IBM Blue Gene/Q is the summer 2012 Class A and Class B Triple Crown team competition winner. Sequoia – an IBM Blue Gene/Q system at Lawrence Livermore National Laboratory – is the Class B Triple Crown individual competition winner and also finished first on both the TOP500 and the Graph 500. Another Blue Gene/Q system beat Sequoia out for the top spot on the Green500. Sequoia finished in 20th place on the Green500, having been beaten by 19 other Blue Gene/Q systems.

Another Blue Gene/Q system – Mira, located at the Argonne National Laboratory – was nosed out by Sequoia, in a photo finish, in the individual competition. So, machines from the IBM Stables dominated the Summer 2012 competitions.

Now, on to the current race results.

In November 2012, the population of the Graph 500 list expanded fairly substantially. This version contains 124 entries, almost 40 percent more than the previous one. While we were only able to clearly identify 41 of them as being included in the other two 500 lists, this is more than twice as many as our previous comparisons contained. For consistency with those previous comparisons, we’ve taken the top 19 of those 41 and compared their rankings on all three lists in the graphic below. We’ve also maintained the same vertical axis scale used previously, for ease in viewing across all three graphics.

Fall 2012 Graph

Individual Competition

Class A Winner: None

Class B Winner: JuQueen

The input data for the team competition are summarized in the table below.

Table3

These data yield:

Team Competition

Class A Winner: IBM Blue Gene/Q

Class B Winner: IBM Blue Gene/Q

The IBM Blue Gene/Q is the fall 2012 Class A and Class B Triple Crown team competition winner. JuQueen – an IBM Blue Gene/Q system at Forschungszentrum Jülich (FZJ) in Germany – is the Class B Triple Crown individual competition winner and thus becomes the first European winner of the Class B individual competition. Also notable is that every system in the Top 10 for this Triple Crown competition is an IBM Blue Gene/Q (JuQueen through Sakura). So, once again, machines from the IBM stables dominated the fall 2012 races.

Where, in all of this, is Titan, you might ask. Well, unfortunately, Titan, a Cray XK7 and the TOP500 race winner, did not compete in the Graph 500.

We’ve summarized the results of all HPC Triple Crown competitions in the table below and highlighted the row containing the new results.

Table4

So far, no machine has won the Class A individual competition and only two machine types have won the Class A team competition – Tsubame and Blue Gene/Q. Here’s a table of those machines which have come closest to winning the Class A individual competition.

Date

Machine

Ranking on “500 List”

Average Ranking

Top500

Green500

Graph500

Fall 2010

Intrepid

13

29

1

14.3

Summer 2011

Hopper

8

42

4

18

Jugene

12

40

2

18

Fall 2011

Tsubame

5

10

3

6

Summer 2012

Sequoia

1

20

1

7.3

Fall 2012

JuQueen

5

5

3

4.3

Will some iron horse win the Class A individual Triple Crown next time, or is placing first on all three 500 lists just too hard? Will the IBM stables continue to dominate or will Titan or some other machine steal some of the glory? Will the Graph 500 continue to grow and include more of the machines on the other two 500 lists? We’ll see what happens next summer.

In real horse racing, winning the Triple Crown accords prestige to horses, their humans and stables; adds economic value to the winners and their offspring; and provides entertainment for racing fans. Our iron horse races serve just about the same purposes. So, HPC racing fans, do your own analysis of the race results, take a look at the iron horses likely to race well next time, get ready to place your bets, and enjoy the upcoming summer 2013 races!

About the Author

Gary M. Johnson is the founder of Computational Science Solutions, LLC, whose mission is to develop, advocate, and implement solutions for the global computational science and engineering community.

Dr. Johnson specializes in management of high performance computing, applied mathematics, and computational science research activities; advocacy, development, and management of high performance computing centers; development of national science and technology policy; and creation of education and research programs in computational engineering and science.

He has worked in academia, industry and government. He has held full professorships at Colorado State University and George Mason University, been a researcher at United Technologies Research Center, and worked for the Department of Defense, NASA, and the Department of Energy.

He is a graduate of the U.S. Air Force Academy; holds advanced degrees from Caltech and the von Karman Institute; and has a Ph.D. in applied sciences from the University of Brussels.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This