DOE Commissions Extreme Computing Study

By Tiffany Trader

December 3, 2012

The HPC community’s preoccupation with 1000X increments is well-documented. These thousand-fold speed-ups are parlayed into flashy systems, unveiled roughly every ten years or so. IBM’s Roadrunner had barely broken the petascale barrier in 2008, when the HPC community issued a collective, “what’s next?” Enter extreme computing.

According to the Council on Competitiveness, “Extreme Computing can be defined as pushing the boundaries of what can be currently achieved with High Performance Computing (HPC) and is 500 to 1,000 times more capable than current high-end systems.”

The Council, a public policy organization comprised of CEOs, university presidents and labor leaders, believes that extreme computing “will help the U.S. sustain its competitive edge in basic sciences, engineering, and research and development – and when applied to industrial and commercial applications will fuel US innovation and economic growth.”

To explore the implications of the emerging post-petaflop era, the Council on Competitiveness was awarded a $914,000 grant from the Department of Energy, the US government agency now driving the nation’s exascale roadmap. The new endeavor complements the work that the Council has done with small to medium-sized enterprises, under its National Digital Engineering and Manufacturing Consortium project (NDEMC, pronounced “endemic”).

At SC12 in Salt Lake City, the same week the DOE funding was announced, HPCwire sat down with Council on Competitiveness Senior Vice President Cynthia R. McIntyre to discuss the merits of the project. Dr. McIntyre has been leading the Council’s High Performance Computing (HPC) Initiative since 2008.

According to her, the project is well aligned with their mission to encourage public-private partnerships to advance innovation in the US. They believe this is an effective way to leverage federal investments – in computing and software development – to achieve scientific return that can be transformed into economic gains on the industry side.

The DOE grant came about through meetings of a sub-group of the HPC Advisory Committee. They saw that certain areas of computational technology were not developing at a rate that supported innovation and acceleration. For example, they noticed a lack of new application software development. Software developed in the public sector is available, but it is not being captured by industry. The codes coming out of research could be more widely deployed if they were made industry-hardened, however.

The group also discussed the need for software codes that could be employed to make petascale systems feasible and useful, and they wanted to know if their current codes would scale to work on petascale systems. Concern was voiced over whether the ISV community would support emerging platforms. In McIntyre’s words, “there is a lead lag situation.”

The companies that were involved in these talks saw an opportunity for the feds to lead and help advance the application software for commercial use. They talked about having more flexible access to the highest-end computing platforms. Currently they can gain access through collaborative research agreements, CRADAs, which allow companies to partner with national labs on research problems that can be jointly addressed and have mutual benefit. The mechanism is in place, but it can be a time-consuming affair. Naturally, companies are interested in streamlining the process; they’d like to establish a faster connection to the federal labs.

These large companies know that DOE will be moving toward exascale, but in order to plan for the future and create their own roadmaps, they need a better idea of what’s going on at the federal and research level. This will help them begin to understand the kinds of problems that they can solve on next-generation systems and how their codes will make the adjustment. Basically, they want to have a conversation with the DOE, to be briefed on what’s being talked about and what’s being decided.

“The industry is interested in exascale,” says McIntyre, “but they need an opportunity to hear about what’s going on, to reflect on that and to then to begin to think strategically about when this platform comes online or the technologies become available how’s that going to impact what they do in terms of their computing.”

Because of its connection to key stakeholders – CEOs, university heads and labor leaders – and its engagement with national labs, the Council is in a position to convene these parties to hear about what the roadmap is for exascale coming out of the DOE.

“The OEMs need a much more organized and focused engagement to understand how the technology, and the plans for the technology, are evolving,” explains McIntyre. “We would like to bring the OEMs to the table with the DOE to talk about the kinds of projects or problems that could be addressed with such a system if certain elements are in place. This is what we will be doing with the DOE grant – talk about the issues of software development, codes that the DOE will have – and find out is there a mechanism for commercializing those codes for industrial use.”

This grant covers a period of three years during which the Council will publish the conversations and findings in a series of reports and case studies. While it’s too early to speculate on the specifics of the schedule at this time, the DOE has submitted a report that should provide further details once it is made public.

The path to exascale presents numerous difficult challenges, especially in regard to the limitations of current architectural designs. There are memory walls, power walls, and issues of fault tolerance. When scaling current systems no longer suffices as a way forward, progress hinges on breakthroughs. But this requires something that has been in rather limited supply: the political will to support funding that could enable such breakthroughs.

This week the DOE pushed back its exascale timeframe projections by two to four years, which means the first US systems aren’t expected to come online until at least 2020, but more likely, not till 2022. And that’s assuming the agency’s 2014 budget proposals are accepted by Congress.

In aiming to create a better understanding of the “drivers and benefits of Extreme Computing – in particular as it relates to our country’s industrial and commercial competitiveness in the global economy,” one has to wonder if the strength of the Council’s conclusions will help convince US funding agencies to loosen their purse strings. On the other hand, do we really need more proof of the merits of a well-funded national HPC strategy?

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This