DOE Commissions Extreme Computing Study

By Tiffany Trader

December 3, 2012

The HPC community’s preoccupation with 1000X increments is well-documented. These thousand-fold speed-ups are parlayed into flashy systems, unveiled roughly every ten years or so. IBM’s Roadrunner had barely broken the petascale barrier in 2008, when the HPC community issued a collective, “what’s next?” Enter extreme computing.

According to the Council on Competitiveness, “Extreme Computing can be defined as pushing the boundaries of what can be currently achieved with High Performance Computing (HPC) and is 500 to 1,000 times more capable than current high-end systems.”

The Council, a public policy organization comprised of CEOs, university presidents and labor leaders, believes that extreme computing “will help the U.S. sustain its competitive edge in basic sciences, engineering, and research and development – and when applied to industrial and commercial applications will fuel US innovation and economic growth.”

To explore the implications of the emerging post-petaflop era, the Council on Competitiveness was awarded a $914,000 grant from the Department of Energy, the US government agency now driving the nation’s exascale roadmap. The new endeavor complements the work that the Council has done with small to medium-sized enterprises, under its National Digital Engineering and Manufacturing Consortium project (NDEMC, pronounced “endemic”).

At SC12 in Salt Lake City, the same week the DOE funding was announced, HPCwire sat down with Council on Competitiveness Senior Vice President Cynthia R. McIntyre to discuss the merits of the project. Dr. McIntyre has been leading the Council’s High Performance Computing (HPC) Initiative since 2008.

According to her, the project is well aligned with their mission to encourage public-private partnerships to advance innovation in the US. They believe this is an effective way to leverage federal investments – in computing and software development – to achieve scientific return that can be transformed into economic gains on the industry side.

The DOE grant came about through meetings of a sub-group of the HPC Advisory Committee. They saw that certain areas of computational technology were not developing at a rate that supported innovation and acceleration. For example, they noticed a lack of new application software development. Software developed in the public sector is available, but it is not being captured by industry. The codes coming out of research could be more widely deployed if they were made industry-hardened, however.

The group also discussed the need for software codes that could be employed to make petascale systems feasible and useful, and they wanted to know if their current codes would scale to work on petascale systems. Concern was voiced over whether the ISV community would support emerging platforms. In McIntyre’s words, “there is a lead lag situation.”

The companies that were involved in these talks saw an opportunity for the feds to lead and help advance the application software for commercial use. They talked about having more flexible access to the highest-end computing platforms. Currently they can gain access through collaborative research agreements, CRADAs, which allow companies to partner with national labs on research problems that can be jointly addressed and have mutual benefit. The mechanism is in place, but it can be a time-consuming affair. Naturally, companies are interested in streamlining the process; they’d like to establish a faster connection to the federal labs.

These large companies know that DOE will be moving toward exascale, but in order to plan for the future and create their own roadmaps, they need a better idea of what’s going on at the federal and research level. This will help them begin to understand the kinds of problems that they can solve on next-generation systems and how their codes will make the adjustment. Basically, they want to have a conversation with the DOE, to be briefed on what’s being talked about and what’s being decided.

“The industry is interested in exascale,” says McIntyre, “but they need an opportunity to hear about what’s going on, to reflect on that and to then to begin to think strategically about when this platform comes online or the technologies become available how’s that going to impact what they do in terms of their computing.”

Because of its connection to key stakeholders – CEOs, university heads and labor leaders – and its engagement with national labs, the Council is in a position to convene these parties to hear about what the roadmap is for exascale coming out of the DOE.

“The OEMs need a much more organized and focused engagement to understand how the technology, and the plans for the technology, are evolving,” explains McIntyre. “We would like to bring the OEMs to the table with the DOE to talk about the kinds of projects or problems that could be addressed with such a system if certain elements are in place. This is what we will be doing with the DOE grant – talk about the issues of software development, codes that the DOE will have – and find out is there a mechanism for commercializing those codes for industrial use.”

This grant covers a period of three years during which the Council will publish the conversations and findings in a series of reports and case studies. While it’s too early to speculate on the specifics of the schedule at this time, the DOE has submitted a report that should provide further details once it is made public.

The path to exascale presents numerous difficult challenges, especially in regard to the limitations of current architectural designs. There are memory walls, power walls, and issues of fault tolerance. When scaling current systems no longer suffices as a way forward, progress hinges on breakthroughs. But this requires something that has been in rather limited supply: the political will to support funding that could enable such breakthroughs.

This week the DOE pushed back its exascale timeframe projections by two to four years, which means the first US systems aren’t expected to come online until at least 2020, but more likely, not till 2022. And that’s assuming the agency’s 2014 budget proposals are accepted by Congress.

In aiming to create a better understanding of the “drivers and benefits of Extreme Computing – in particular as it relates to our country’s industrial and commercial competitiveness in the global economy,” one has to wonder if the strength of the Council’s conclusions will help convince US funding agencies to loosen their purse strings. On the other hand, do we really need more proof of the merits of a well-funded national HPC strategy?

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

Intel, Micron to Go Their Separate 3D NAND Ways

January 10, 2018

The announcement on Monday (Jan. 8) that Intel and Micron have decided to “update” – that is, end – their long-term joint development partnership for 3D NAND technology is nearly as interesting an exercise in pub Read more…

By Doug Black

HPE Extreme Performance Solutions

The Living Heart Project Wins Three Prestigious Awards for HPC Simulation

Imagine creating a treatment plan for a patient on the other side of the world, or testing a drug without ever putting subjects at risk. Read more…

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect application performance by 10-30 percent. The patch makes any call fro Read more…

By Rosemary Francis

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Independent Hyperion Research Will Chart its Own Course

December 19, 2017

Hyperion Research, formerly the HPC research and consulting practice within IDC, has become an independent company with Earl Joseph, the long-time leader of the Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This