Neutron Science and Supercomputing Come Together at Oak Ridge National Lab

By Agatha Bardoel

December 4, 2012

Novel capability will deliver the best of high-performance computing and cloud computing

Next-generation neutron scattering requires next-generation data analysis infrastructure. And that means not just more data, accelerated reduction, and translation and analysis, but linking the neutron scattering on a beam line live to a simulation platform where modeling and simulation can guide the experiment.

As the data sets generated by the increasingly powerful neutron scattering instruments at Oak Ridge National Laboratory’s (ORNL’s) Spallation Neutron Source (SNS) grow ever more massive, the facility’s users require significant advances in data reduction and analysis tools so they can cope. SNS is the world’s most intense pulsed, accelerator-based neutron source for scientific research and development.

Funded by the US Department of Energy Office of Basic Energy Sciences, this national user facility hosts hundreds of scientists from all over the world every year, most of whom are engaged in materials science research. Now the SNS data specialists have teamed with ORNL’s Computing and Computational Sciences Directorate to form a strategic alliance to meet the neutron science users’ next-generation requirements.

The result is ADARA – the Accelerating Data Acquisition, Reduction, and Analysis Collaboration project, which comprises individuals from across ORNL spanning five divisions: the Neutron Sciences Directorate’s (NScD’s) Neutron Data Analysis and Visualization Division (NDAV) and Research Accelerator Division, the Computing and Computational Sciences Directorate’s (CCSD’s) Computer Science and Mathematics Division, National Center for Computational Sciences (NCCS) and Information Technology Services Division.

The collaboration between neutron sciences and supercomputing, two of ORNL’s most high-powered research centers, has created a new data infrastructure that will enhance users’ ability to reduce and analyze data as they are taken; create data files instantly after acquisition, regardless of size; reduce a data set in seconds after acquisition; and provide the resources for any user to do post-acquisition reduction, analysis, visualization, and modeling – not just on site – but literally from anywhere.

At neutron experimental facilities today, research scientists collect data during experiments and do an initial analysis of their findings. The detailed data analysis that follows can take from minutes to months. For maximum effect, visiting users manipulate their data – reduce it, analyze it, and, increasingly, visualize and model it on supercomputers – to fully understand the content. This is an interactive process.

Galen Shipman is data system architect for the Computing and Computational Sciences Directorate and principal investigator of the ADARA project. We asked him to tell us what improvements SNS users can expect in the coming months.

What are the data access and analysis problems that confront SNS users today?

Galen Shipman: Much of the software infrastructure for data acquisition, reduction, and analysis at SNS was designed more than a decade ago. It is a good system and has served the needs of the users, but there is a need to shorten the time from experiment to the scientific result. That is really what the ADARA project is about. It’s about decreasing this time by providing a streaming data infrastructure and an integrated high-performance computing (HPC) capability that provides users with instant feedback from experiments at SNS.

We began in October 2011 with an analysis of the current infrastructure, working with experts at SNS. We quickly found that one of the major issues was how long it took to start getting feedback from an experiment on a beam line as it is running. What the scientist often wants to see from an experiment at SNS is an energy spectrum, but the data captured and provided to the user are simply the position and time of flight of neutrons as they travel through a material and hit a bank of detectors surrounding the material.

The current process of providing this feedback entails capturing all the neutron event data and saving it to a data file. After the entire experiment is complete, the data files are translated to a common data format known as NeXus. After this translation is complete, a data reduction process uses MANTID, a data-reduction platform, to transform the raw neutron event data to an energy spectrum or diffraction pattern. Finally, then, the user starts seeing the results of the experiment.

Often reduction is a short process. It can be minutes for small data sets on short experiments. In other cases, it can take a day or more – a full day from completion of the experiment and then another day to actually start getting feedback on what it meant and what the results are. This long lead time from the experiment to receiving feedback from the experiment can significantly impact the productivity of scientists at SNS.

How did the team propose to speed up data reduction and get to that energy spectrum faster?

Shipman: The concept, the leap forward, is to go from experiment to data reduction to obtaining an energy spectrum nearly instantaneously, while the experiment is still running.

Rather than the current approach of saving data in “buckets” and, once the bucket is full, handing the bucket off to the next process, we do a streaming approach. As data are being captured, we concurrently do translation. Every single event coming off a detector is translated live to a common data format. While doing translation, we are also doing data reduction, so as those events are coming off the detectors, we are also doing live data reduction into an energy spectrum.

How do you enable simultaneous translation and reduction of the neutron events coming off the detectors?

Shipman: For the architecture, we’ve leveraged some of the techniques that we were already using in HPC, as well as some of the techniques from more traditional, distributed computing. The fundamental architecture for our streaming data system is built upon a high-performance publish/subscribe system. We have a system we call the stream management service (SMS). It collects information from multiple feeds: from the neutron detectors, the experiment environment, such as temperature within the sample environment, and orientation of the sample. This information is what we call slow controls information. We also collect data from a variety of other sources such as Fermi choppers [devices that block the neutron beam for a fraction of time in milliseconds]. All of these data are “published” to the SMS, which then aggregates the data into a single, common network stream that can be sent to one or more downstream “subscribers.”

One of the downstream subscribers we have developed has been dubbed the Streaming Translation Service, which translates the unified neutron event stream on the fly and creates NeXus files live, as the experiment is conducted. The instant an experiment is over, the full NeXus file is created. It’s done. It doesn’t matter if it is a terabyte. It doesn’t matter if it is just a few megabytes.

Another downstream subscriber we have developed, known as the Streaming Reduction Service, which leverages the MANTID system, transforms the neutron event stream live from simple detector position and time of flight to an energy spectrum in real time. This provides scientists at SNS with real-time feedback from their experiment coupled with the Mantid reduction and analysis platform.

What happens to all the data after the experiment is completed?

Shipman: Although much of our work has focused on providing real-time feedback from an experiment, certain tasks in the data processing chain can be conducted only after the experiment is completed. To support this, the ADARA team has developed an automated workflow engine based on the Apache ActiveMQ system for post-stream processing. This workflow engine allows for coupling of an arbitrary number of tasks to the completion of an experiment, such as cataloging of the experiment data, additional data reduction and analysis, and archiving of the experiment data to our multi-petabyte archival storage system at the NCCS.

Once cataloged, these data are available for subsequent reanalysis and intercomparison with previous experiments. This post-processing step can be highly interactive in which users interact with their data through the Mantid software package or through other analysis tools and custom applications. Although much of the data captured can be analyzed using a workstation computer, many of the datasets require HPC systems to provide users with timely feedback. While HPC systems can provide timely feedback and support interactive analysis, in the past these systems have only been accessible by advanced users with a background in parallel computing. To support a much broader set of users, we have integrated support of HPC systems into Mantid, effectively hiding the complexities of parallel computing while providing its benefits to our users.

So you bring the advantages of HPC systems to all the SNS users?

Shipman: Exactly. We have built an integrated HPC capability for users at SNS. Through a web service-enabled architecture, scientists at SNS – or scientists sitting in a coffee shop across the country – can seamlessly conduct a variety of analysis or reduction tasks on HPC infrastructure at the NCCS. From the users’ perspective, they are interacting with an application on their desktop. But behind the scenes, we are farming out larger reduction and analysis tasks to HPC systems running the Moab Intelligence engine from Adaptive Computing through a Web Service RESTful API. These HPC systems have an order of magnitude more computational capability than their desktop. This has enabled dramatic acceleration in post-processing workloads, in which scientists reanalyze their data from a completed experiment or compare a number of completed experiments. Our ActiveMQ workflow manager, based on Apache Active MQ, can also leverage this framework, farming out computationally intensive tasks to HPC systems at the NCCS as part of the experiment pipeline. We are really excited about this capability; we have in essence developed an elastic compute capability using both software as-a-service and platform as-a-service models that deliver the best of HPC and cloud computing to users at SNS.

Is neutron science research effectively partnering with supercomputing?

Shipman: Yes. The ADARA team has already built out the software and hardware infrastructure to support the use of NCCS HPC systems by scientists at SNS. Our next steps will include coupling the live streaming capability with modeling and simulation, enabling real-time analysis of experiments, such as fitting of the experiment data to a model of the material in the experiment. This will enable an entirely new level of real-time feedback from experiments at SNS. In the future, this and techniques that leverage the coupling of experiment and simulation will enable systems at the Oak Ridge Leadership Computing Facility (OLCF) to steer the experiment, providing the scientist with real-time information from a simulation of the material that they can use to more efficiently conduct the experiment at SNS. In fact, we have begun the initial steps of this work through the Center for Accelerated Materials Modeling, led by Mark Hagen, NDAV group lead.

Through this and other upcoming work, we see a future in which the Titan multi-petaflop platform at the OLCF could be steering an experiment based on intercomparison of simulation of a material with neutron data captured at SNS. This coupling of neutrons and computation could provide new breakthroughs in materials science, biology, and engineering, while significantly improving the productivity of our users.

What and who got this started?

Shipman: Jeff Nichols, the associate Laboratory director for the CCSD, and Kelly Beierschmitt, the associate Laboratory director for NScD, recognized the importance of coupling computation and neutron science. They realized that by doing so we could make significant progress in increasing the productivity of scientists at SNS and ultimately develop new capabilities in multiple science domains that use neutrons and computing.

The ADARA project has required expertise in both computing and neutron science. The computing team doesn’t have the science background in neutrons but does have the software/engineering background required to help build the system. So in collaboration, leveraging previous work that the neutron sciences data team had done, the ADARA team was able to extend those concepts and write new software to deliver a streaming infrastructure and an integrated HPC capability at SNS. Although we have made significant progress through the ADARA project, this is just the beginning of a long-term strategic partnership between computing and neutron science here at ORNL, a partnership enabled by the Laboratory’s multi-program science and technology capabilities.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This