Neutron Science and Supercomputing Come Together at Oak Ridge National Lab

By Agatha Bardoel

December 4, 2012

Novel capability will deliver the best of high-performance computing and cloud computing

Next-generation neutron scattering requires next-generation data analysis infrastructure. And that means not just more data, accelerated reduction, and translation and analysis, but linking the neutron scattering on a beam line live to a simulation platform where modeling and simulation can guide the experiment.

As the data sets generated by the increasingly powerful neutron scattering instruments at Oak Ridge National Laboratory’s (ORNL’s) Spallation Neutron Source (SNS) grow ever more massive, the facility’s users require significant advances in data reduction and analysis tools so they can cope. SNS is the world’s most intense pulsed, accelerator-based neutron source for scientific research and development.

Funded by the US Department of Energy Office of Basic Energy Sciences, this national user facility hosts hundreds of scientists from all over the world every year, most of whom are engaged in materials science research. Now the SNS data specialists have teamed with ORNL’s Computing and Computational Sciences Directorate to form a strategic alliance to meet the neutron science users’ next-generation requirements.

The result is ADARA – the Accelerating Data Acquisition, Reduction, and Analysis Collaboration project, which comprises individuals from across ORNL spanning five divisions: the Neutron Sciences Directorate’s (NScD’s) Neutron Data Analysis and Visualization Division (NDAV) and Research Accelerator Division, the Computing and Computational Sciences Directorate’s (CCSD’s) Computer Science and Mathematics Division, National Center for Computational Sciences (NCCS) and Information Technology Services Division.

The collaboration between neutron sciences and supercomputing, two of ORNL’s most high-powered research centers, has created a new data infrastructure that will enhance users’ ability to reduce and analyze data as they are taken; create data files instantly after acquisition, regardless of size; reduce a data set in seconds after acquisition; and provide the resources for any user to do post-acquisition reduction, analysis, visualization, and modeling – not just on site – but literally from anywhere.

At neutron experimental facilities today, research scientists collect data during experiments and do an initial analysis of their findings. The detailed data analysis that follows can take from minutes to months. For maximum effect, visiting users manipulate their data – reduce it, analyze it, and, increasingly, visualize and model it on supercomputers – to fully understand the content. This is an interactive process.

Galen Shipman is data system architect for the Computing and Computational Sciences Directorate and principal investigator of the ADARA project. We asked him to tell us what improvements SNS users can expect in the coming months.

What are the data access and analysis problems that confront SNS users today?

Galen Shipman: Much of the software infrastructure for data acquisition, reduction, and analysis at SNS was designed more than a decade ago. It is a good system and has served the needs of the users, but there is a need to shorten the time from experiment to the scientific result. That is really what the ADARA project is about. It’s about decreasing this time by providing a streaming data infrastructure and an integrated high-performance computing (HPC) capability that provides users with instant feedback from experiments at SNS.

We began in October 2011 with an analysis of the current infrastructure, working with experts at SNS. We quickly found that one of the major issues was how long it took to start getting feedback from an experiment on a beam line as it is running. What the scientist often wants to see from an experiment at SNS is an energy spectrum, but the data captured and provided to the user are simply the position and time of flight of neutrons as they travel through a material and hit a bank of detectors surrounding the material.

The current process of providing this feedback entails capturing all the neutron event data and saving it to a data file. After the entire experiment is complete, the data files are translated to a common data format known as NeXus. After this translation is complete, a data reduction process uses MANTID, a data-reduction platform, to transform the raw neutron event data to an energy spectrum or diffraction pattern. Finally, then, the user starts seeing the results of the experiment.

Often reduction is a short process. It can be minutes for small data sets on short experiments. In other cases, it can take a day or more – a full day from completion of the experiment and then another day to actually start getting feedback on what it meant and what the results are. This long lead time from the experiment to receiving feedback from the experiment can significantly impact the productivity of scientists at SNS.

How did the team propose to speed up data reduction and get to that energy spectrum faster?

Shipman: The concept, the leap forward, is to go from experiment to data reduction to obtaining an energy spectrum nearly instantaneously, while the experiment is still running.

Rather than the current approach of saving data in “buckets” and, once the bucket is full, handing the bucket off to the next process, we do a streaming approach. As data are being captured, we concurrently do translation. Every single event coming off a detector is translated live to a common data format. While doing translation, we are also doing data reduction, so as those events are coming off the detectors, we are also doing live data reduction into an energy spectrum.

How do you enable simultaneous translation and reduction of the neutron events coming off the detectors?

Shipman: For the architecture, we’ve leveraged some of the techniques that we were already using in HPC, as well as some of the techniques from more traditional, distributed computing. The fundamental architecture for our streaming data system is built upon a high-performance publish/subscribe system. We have a system we call the stream management service (SMS). It collects information from multiple feeds: from the neutron detectors, the experiment environment, such as temperature within the sample environment, and orientation of the sample. This information is what we call slow controls information. We also collect data from a variety of other sources such as Fermi choppers [devices that block the neutron beam for a fraction of time in milliseconds]. All of these data are “published” to the SMS, which then aggregates the data into a single, common network stream that can be sent to one or more downstream “subscribers.”

One of the downstream subscribers we have developed has been dubbed the Streaming Translation Service, which translates the unified neutron event stream on the fly and creates NeXus files live, as the experiment is conducted. The instant an experiment is over, the full NeXus file is created. It’s done. It doesn’t matter if it is a terabyte. It doesn’t matter if it is just a few megabytes.

Another downstream subscriber we have developed, known as the Streaming Reduction Service, which leverages the MANTID system, transforms the neutron event stream live from simple detector position and time of flight to an energy spectrum in real time. This provides scientists at SNS with real-time feedback from their experiment coupled with the Mantid reduction and analysis platform.

What happens to all the data after the experiment is completed?

Shipman: Although much of our work has focused on providing real-time feedback from an experiment, certain tasks in the data processing chain can be conducted only after the experiment is completed. To support this, the ADARA team has developed an automated workflow engine based on the Apache ActiveMQ system for post-stream processing. This workflow engine allows for coupling of an arbitrary number of tasks to the completion of an experiment, such as cataloging of the experiment data, additional data reduction and analysis, and archiving of the experiment data to our multi-petabyte archival storage system at the NCCS.

Once cataloged, these data are available for subsequent reanalysis and intercomparison with previous experiments. This post-processing step can be highly interactive in which users interact with their data through the Mantid software package or through other analysis tools and custom applications. Although much of the data captured can be analyzed using a workstation computer, many of the datasets require HPC systems to provide users with timely feedback. While HPC systems can provide timely feedback and support interactive analysis, in the past these systems have only been accessible by advanced users with a background in parallel computing. To support a much broader set of users, we have integrated support of HPC systems into Mantid, effectively hiding the complexities of parallel computing while providing its benefits to our users.

So you bring the advantages of HPC systems to all the SNS users?

Shipman: Exactly. We have built an integrated HPC capability for users at SNS. Through a web service-enabled architecture, scientists at SNS – or scientists sitting in a coffee shop across the country – can seamlessly conduct a variety of analysis or reduction tasks on HPC infrastructure at the NCCS. From the users’ perspective, they are interacting with an application on their desktop. But behind the scenes, we are farming out larger reduction and analysis tasks to HPC systems running the Moab Intelligence engine from Adaptive Computing through a Web Service RESTful API. These HPC systems have an order of magnitude more computational capability than their desktop. This has enabled dramatic acceleration in post-processing workloads, in which scientists reanalyze their data from a completed experiment or compare a number of completed experiments. Our ActiveMQ workflow manager, based on Apache Active MQ, can also leverage this framework, farming out computationally intensive tasks to HPC systems at the NCCS as part of the experiment pipeline. We are really excited about this capability; we have in essence developed an elastic compute capability using both software as-a-service and platform as-a-service models that deliver the best of HPC and cloud computing to users at SNS.

Is neutron science research effectively partnering with supercomputing?

Shipman: Yes. The ADARA team has already built out the software and hardware infrastructure to support the use of NCCS HPC systems by scientists at SNS. Our next steps will include coupling the live streaming capability with modeling and simulation, enabling real-time analysis of experiments, such as fitting of the experiment data to a model of the material in the experiment. This will enable an entirely new level of real-time feedback from experiments at SNS. In the future, this and techniques that leverage the coupling of experiment and simulation will enable systems at the Oak Ridge Leadership Computing Facility (OLCF) to steer the experiment, providing the scientist with real-time information from a simulation of the material that they can use to more efficiently conduct the experiment at SNS. In fact, we have begun the initial steps of this work through the Center for Accelerated Materials Modeling, led by Mark Hagen, NDAV group lead.

Through this and other upcoming work, we see a future in which the Titan multi-petaflop platform at the OLCF could be steering an experiment based on intercomparison of simulation of a material with neutron data captured at SNS. This coupling of neutrons and computation could provide new breakthroughs in materials science, biology, and engineering, while significantly improving the productivity of our users.

What and who got this started?

Shipman: Jeff Nichols, the associate Laboratory director for the CCSD, and Kelly Beierschmitt, the associate Laboratory director for NScD, recognized the importance of coupling computation and neutron science. They realized that by doing so we could make significant progress in increasing the productivity of scientists at SNS and ultimately develop new capabilities in multiple science domains that use neutrons and computing.

The ADARA project has required expertise in both computing and neutron science. The computing team doesn’t have the science background in neutrons but does have the software/engineering background required to help build the system. So in collaboration, leveraging previous work that the neutron sciences data team had done, the ADARA team was able to extend those concepts and write new software to deliver a streaming infrastructure and an integrated HPC capability at SNS. Although we have made significant progress through the ADARA project, this is just the beginning of a long-term strategic partnership between computing and neutron science here at ORNL, a partnership enabled by the Laboratory’s multi-program science and technology capabilities.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This