Neutron Science and Supercomputing Come Together at Oak Ridge National Lab

By Agatha Bardoel

December 4, 2012

Novel capability will deliver the best of high-performance computing and cloud computing

Next-generation neutron scattering requires next-generation data analysis infrastructure. And that means not just more data, accelerated reduction, and translation and analysis, but linking the neutron scattering on a beam line live to a simulation platform where modeling and simulation can guide the experiment.

As the data sets generated by the increasingly powerful neutron scattering instruments at Oak Ridge National Laboratory’s (ORNL’s) Spallation Neutron Source (SNS) grow ever more massive, the facility’s users require significant advances in data reduction and analysis tools so they can cope. SNS is the world’s most intense pulsed, accelerator-based neutron source for scientific research and development.

Funded by the US Department of Energy Office of Basic Energy Sciences, this national user facility hosts hundreds of scientists from all over the world every year, most of whom are engaged in materials science research. Now the SNS data specialists have teamed with ORNL’s Computing and Computational Sciences Directorate to form a strategic alliance to meet the neutron science users’ next-generation requirements.

The result is ADARA – the Accelerating Data Acquisition, Reduction, and Analysis Collaboration project, which comprises individuals from across ORNL spanning five divisions: the Neutron Sciences Directorate’s (NScD’s) Neutron Data Analysis and Visualization Division (NDAV) and Research Accelerator Division, the Computing and Computational Sciences Directorate’s (CCSD’s) Computer Science and Mathematics Division, National Center for Computational Sciences (NCCS) and Information Technology Services Division.

The collaboration between neutron sciences and supercomputing, two of ORNL’s most high-powered research centers, has created a new data infrastructure that will enhance users’ ability to reduce and analyze data as they are taken; create data files instantly after acquisition, regardless of size; reduce a data set in seconds after acquisition; and provide the resources for any user to do post-acquisition reduction, analysis, visualization, and modeling – not just on site – but literally from anywhere.

At neutron experimental facilities today, research scientists collect data during experiments and do an initial analysis of their findings. The detailed data analysis that follows can take from minutes to months. For maximum effect, visiting users manipulate their data – reduce it, analyze it, and, increasingly, visualize and model it on supercomputers – to fully understand the content. This is an interactive process.

Galen Shipman is data system architect for the Computing and Computational Sciences Directorate and principal investigator of the ADARA project. We asked him to tell us what improvements SNS users can expect in the coming months.

What are the data access and analysis problems that confront SNS users today?

Galen Shipman: Much of the software infrastructure for data acquisition, reduction, and analysis at SNS was designed more than a decade ago. It is a good system and has served the needs of the users, but there is a need to shorten the time from experiment to the scientific result. That is really what the ADARA project is about. It’s about decreasing this time by providing a streaming data infrastructure and an integrated high-performance computing (HPC) capability that provides users with instant feedback from experiments at SNS.

We began in October 2011 with an analysis of the current infrastructure, working with experts at SNS. We quickly found that one of the major issues was how long it took to start getting feedback from an experiment on a beam line as it is running. What the scientist often wants to see from an experiment at SNS is an energy spectrum, but the data captured and provided to the user are simply the position and time of flight of neutrons as they travel through a material and hit a bank of detectors surrounding the material.

The current process of providing this feedback entails capturing all the neutron event data and saving it to a data file. After the entire experiment is complete, the data files are translated to a common data format known as NeXus. After this translation is complete, a data reduction process uses MANTID, a data-reduction platform, to transform the raw neutron event data to an energy spectrum or diffraction pattern. Finally, then, the user starts seeing the results of the experiment.

Often reduction is a short process. It can be minutes for small data sets on short experiments. In other cases, it can take a day or more – a full day from completion of the experiment and then another day to actually start getting feedback on what it meant and what the results are. This long lead time from the experiment to receiving feedback from the experiment can significantly impact the productivity of scientists at SNS.

How did the team propose to speed up data reduction and get to that energy spectrum faster?

Shipman: The concept, the leap forward, is to go from experiment to data reduction to obtaining an energy spectrum nearly instantaneously, while the experiment is still running.

Rather than the current approach of saving data in “buckets” and, once the bucket is full, handing the bucket off to the next process, we do a streaming approach. As data are being captured, we concurrently do translation. Every single event coming off a detector is translated live to a common data format. While doing translation, we are also doing data reduction, so as those events are coming off the detectors, we are also doing live data reduction into an energy spectrum.

How do you enable simultaneous translation and reduction of the neutron events coming off the detectors?

Shipman: For the architecture, we’ve leveraged some of the techniques that we were already using in HPC, as well as some of the techniques from more traditional, distributed computing. The fundamental architecture for our streaming data system is built upon a high-performance publish/subscribe system. We have a system we call the stream management service (SMS). It collects information from multiple feeds: from the neutron detectors, the experiment environment, such as temperature within the sample environment, and orientation of the sample. This information is what we call slow controls information. We also collect data from a variety of other sources such as Fermi choppers [devices that block the neutron beam for a fraction of time in milliseconds]. All of these data are “published” to the SMS, which then aggregates the data into a single, common network stream that can be sent to one or more downstream “subscribers.”

One of the downstream subscribers we have developed has been dubbed the Streaming Translation Service, which translates the unified neutron event stream on the fly and creates NeXus files live, as the experiment is conducted. The instant an experiment is over, the full NeXus file is created. It’s done. It doesn’t matter if it is a terabyte. It doesn’t matter if it is just a few megabytes.

Another downstream subscriber we have developed, known as the Streaming Reduction Service, which leverages the MANTID system, transforms the neutron event stream live from simple detector position and time of flight to an energy spectrum in real time. This provides scientists at SNS with real-time feedback from their experiment coupled with the Mantid reduction and analysis platform.

What happens to all the data after the experiment is completed?

Shipman: Although much of our work has focused on providing real-time feedback from an experiment, certain tasks in the data processing chain can be conducted only after the experiment is completed. To support this, the ADARA team has developed an automated workflow engine based on the Apache ActiveMQ system for post-stream processing. This workflow engine allows for coupling of an arbitrary number of tasks to the completion of an experiment, such as cataloging of the experiment data, additional data reduction and analysis, and archiving of the experiment data to our multi-petabyte archival storage system at the NCCS.

Once cataloged, these data are available for subsequent reanalysis and intercomparison with previous experiments. This post-processing step can be highly interactive in which users interact with their data through the Mantid software package or through other analysis tools and custom applications. Although much of the data captured can be analyzed using a workstation computer, many of the datasets require HPC systems to provide users with timely feedback. While HPC systems can provide timely feedback and support interactive analysis, in the past these systems have only been accessible by advanced users with a background in parallel computing. To support a much broader set of users, we have integrated support of HPC systems into Mantid, effectively hiding the complexities of parallel computing while providing its benefits to our users.

So you bring the advantages of HPC systems to all the SNS users?

Shipman: Exactly. We have built an integrated HPC capability for users at SNS. Through a web service-enabled architecture, scientists at SNS – or scientists sitting in a coffee shop across the country – can seamlessly conduct a variety of analysis or reduction tasks on HPC infrastructure at the NCCS. From the users’ perspective, they are interacting with an application on their desktop. But behind the scenes, we are farming out larger reduction and analysis tasks to HPC systems running the Moab Intelligence engine from Adaptive Computing through a Web Service RESTful API. These HPC systems have an order of magnitude more computational capability than their desktop. This has enabled dramatic acceleration in post-processing workloads, in which scientists reanalyze their data from a completed experiment or compare a number of completed experiments. Our ActiveMQ workflow manager, based on Apache Active MQ, can also leverage this framework, farming out computationally intensive tasks to HPC systems at the NCCS as part of the experiment pipeline. We are really excited about this capability; we have in essence developed an elastic compute capability using both software as-a-service and platform as-a-service models that deliver the best of HPC and cloud computing to users at SNS.

Is neutron science research effectively partnering with supercomputing?

Shipman: Yes. The ADARA team has already built out the software and hardware infrastructure to support the use of NCCS HPC systems by scientists at SNS. Our next steps will include coupling the live streaming capability with modeling and simulation, enabling real-time analysis of experiments, such as fitting of the experiment data to a model of the material in the experiment. This will enable an entirely new level of real-time feedback from experiments at SNS. In the future, this and techniques that leverage the coupling of experiment and simulation will enable systems at the Oak Ridge Leadership Computing Facility (OLCF) to steer the experiment, providing the scientist with real-time information from a simulation of the material that they can use to more efficiently conduct the experiment at SNS. In fact, we have begun the initial steps of this work through the Center for Accelerated Materials Modeling, led by Mark Hagen, NDAV group lead.

Through this and other upcoming work, we see a future in which the Titan multi-petaflop platform at the OLCF could be steering an experiment based on intercomparison of simulation of a material with neutron data captured at SNS. This coupling of neutrons and computation could provide new breakthroughs in materials science, biology, and engineering, while significantly improving the productivity of our users.

What and who got this started?

Shipman: Jeff Nichols, the associate Laboratory director for the CCSD, and Kelly Beierschmitt, the associate Laboratory director for NScD, recognized the importance of coupling computation and neutron science. They realized that by doing so we could make significant progress in increasing the productivity of scientists at SNS and ultimately develop new capabilities in multiple science domains that use neutrons and computing.

The ADARA project has required expertise in both computing and neutron science. The computing team doesn’t have the science background in neutrons but does have the software/engineering background required to help build the system. So in collaboration, leveraging previous work that the neutron sciences data team had done, the ADARA team was able to extend those concepts and write new software to deliver a streaming infrastructure and an integrated HPC capability at SNS. Although we have made significant progress through the ADARA project, this is just the beginning of a long-term strategic partnership between computing and neutron science here at ORNL, a partnership enabled by the Laboratory’s multi-program science and technology capabilities.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This