Neutron Science and Supercomputing Come Together at Oak Ridge National Lab

By Agatha Bardoel

December 4, 2012

Novel capability will deliver the best of high-performance computing and cloud computing

Next-generation neutron scattering requires next-generation data analysis infrastructure. And that means not just more data, accelerated reduction, and translation and analysis, but linking the neutron scattering on a beam line live to a simulation platform where modeling and simulation can guide the experiment.

As the data sets generated by the increasingly powerful neutron scattering instruments at Oak Ridge National Laboratory’s (ORNL’s) Spallation Neutron Source (SNS) grow ever more massive, the facility’s users require significant advances in data reduction and analysis tools so they can cope. SNS is the world’s most intense pulsed, accelerator-based neutron source for scientific research and development.

Funded by the US Department of Energy Office of Basic Energy Sciences, this national user facility hosts hundreds of scientists from all over the world every year, most of whom are engaged in materials science research. Now the SNS data specialists have teamed with ORNL’s Computing and Computational Sciences Directorate to form a strategic alliance to meet the neutron science users’ next-generation requirements.

The result is ADARA – the Accelerating Data Acquisition, Reduction, and Analysis Collaboration project, which comprises individuals from across ORNL spanning five divisions: the Neutron Sciences Directorate’s (NScD’s) Neutron Data Analysis and Visualization Division (NDAV) and Research Accelerator Division, the Computing and Computational Sciences Directorate’s (CCSD’s) Computer Science and Mathematics Division, National Center for Computational Sciences (NCCS) and Information Technology Services Division.

The collaboration between neutron sciences and supercomputing, two of ORNL’s most high-powered research centers, has created a new data infrastructure that will enhance users’ ability to reduce and analyze data as they are taken; create data files instantly after acquisition, regardless of size; reduce a data set in seconds after acquisition; and provide the resources for any user to do post-acquisition reduction, analysis, visualization, and modeling – not just on site – but literally from anywhere.

At neutron experimental facilities today, research scientists collect data during experiments and do an initial analysis of their findings. The detailed data analysis that follows can take from minutes to months. For maximum effect, visiting users manipulate their data – reduce it, analyze it, and, increasingly, visualize and model it on supercomputers – to fully understand the content. This is an interactive process.

Galen Shipman is data system architect for the Computing and Computational Sciences Directorate and principal investigator of the ADARA project. We asked him to tell us what improvements SNS users can expect in the coming months.

What are the data access and analysis problems that confront SNS users today?

Galen Shipman: Much of the software infrastructure for data acquisition, reduction, and analysis at SNS was designed more than a decade ago. It is a good system and has served the needs of the users, but there is a need to shorten the time from experiment to the scientific result. That is really what the ADARA project is about. It’s about decreasing this time by providing a streaming data infrastructure and an integrated high-performance computing (HPC) capability that provides users with instant feedback from experiments at SNS.

We began in October 2011 with an analysis of the current infrastructure, working with experts at SNS. We quickly found that one of the major issues was how long it took to start getting feedback from an experiment on a beam line as it is running. What the scientist often wants to see from an experiment at SNS is an energy spectrum, but the data captured and provided to the user are simply the position and time of flight of neutrons as they travel through a material and hit a bank of detectors surrounding the material.

The current process of providing this feedback entails capturing all the neutron event data and saving it to a data file. After the entire experiment is complete, the data files are translated to a common data format known as NeXus. After this translation is complete, a data reduction process uses MANTID, a data-reduction platform, to transform the raw neutron event data to an energy spectrum or diffraction pattern. Finally, then, the user starts seeing the results of the experiment.

Often reduction is a short process. It can be minutes for small data sets on short experiments. In other cases, it can take a day or more – a full day from completion of the experiment and then another day to actually start getting feedback on what it meant and what the results are. This long lead time from the experiment to receiving feedback from the experiment can significantly impact the productivity of scientists at SNS.

How did the team propose to speed up data reduction and get to that energy spectrum faster?

Shipman: The concept, the leap forward, is to go from experiment to data reduction to obtaining an energy spectrum nearly instantaneously, while the experiment is still running.

Rather than the current approach of saving data in “buckets” and, once the bucket is full, handing the bucket off to the next process, we do a streaming approach. As data are being captured, we concurrently do translation. Every single event coming off a detector is translated live to a common data format. While doing translation, we are also doing data reduction, so as those events are coming off the detectors, we are also doing live data reduction into an energy spectrum.

How do you enable simultaneous translation and reduction of the neutron events coming off the detectors?

Shipman: For the architecture, we’ve leveraged some of the techniques that we were already using in HPC, as well as some of the techniques from more traditional, distributed computing. The fundamental architecture for our streaming data system is built upon a high-performance publish/subscribe system. We have a system we call the stream management service (SMS). It collects information from multiple feeds: from the neutron detectors, the experiment environment, such as temperature within the sample environment, and orientation of the sample. This information is what we call slow controls information. We also collect data from a variety of other sources such as Fermi choppers [devices that block the neutron beam for a fraction of time in milliseconds]. All of these data are “published” to the SMS, which then aggregates the data into a single, common network stream that can be sent to one or more downstream “subscribers.”

One of the downstream subscribers we have developed has been dubbed the Streaming Translation Service, which translates the unified neutron event stream on the fly and creates NeXus files live, as the experiment is conducted. The instant an experiment is over, the full NeXus file is created. It’s done. It doesn’t matter if it is a terabyte. It doesn’t matter if it is just a few megabytes.

Another downstream subscriber we have developed, known as the Streaming Reduction Service, which leverages the MANTID system, transforms the neutron event stream live from simple detector position and time of flight to an energy spectrum in real time. This provides scientists at SNS with real-time feedback from their experiment coupled with the Mantid reduction and analysis platform.

What happens to all the data after the experiment is completed?

Shipman: Although much of our work has focused on providing real-time feedback from an experiment, certain tasks in the data processing chain can be conducted only after the experiment is completed. To support this, the ADARA team has developed an automated workflow engine based on the Apache ActiveMQ system for post-stream processing. This workflow engine allows for coupling of an arbitrary number of tasks to the completion of an experiment, such as cataloging of the experiment data, additional data reduction and analysis, and archiving of the experiment data to our multi-petabyte archival storage system at the NCCS.

Once cataloged, these data are available for subsequent reanalysis and intercomparison with previous experiments. This post-processing step can be highly interactive in which users interact with their data through the Mantid software package or through other analysis tools and custom applications. Although much of the data captured can be analyzed using a workstation computer, many of the datasets require HPC systems to provide users with timely feedback. While HPC systems can provide timely feedback and support interactive analysis, in the past these systems have only been accessible by advanced users with a background in parallel computing. To support a much broader set of users, we have integrated support of HPC systems into Mantid, effectively hiding the complexities of parallel computing while providing its benefits to our users.

So you bring the advantages of HPC systems to all the SNS users?

Shipman: Exactly. We have built an integrated HPC capability for users at SNS. Through a web service-enabled architecture, scientists at SNS – or scientists sitting in a coffee shop across the country – can seamlessly conduct a variety of analysis or reduction tasks on HPC infrastructure at the NCCS. From the users’ perspective, they are interacting with an application on their desktop. But behind the scenes, we are farming out larger reduction and analysis tasks to HPC systems running the Moab Intelligence engine from Adaptive Computing through a Web Service RESTful API. These HPC systems have an order of magnitude more computational capability than their desktop. This has enabled dramatic acceleration in post-processing workloads, in which scientists reanalyze their data from a completed experiment or compare a number of completed experiments. Our ActiveMQ workflow manager, based on Apache Active MQ, can also leverage this framework, farming out computationally intensive tasks to HPC systems at the NCCS as part of the experiment pipeline. We are really excited about this capability; we have in essence developed an elastic compute capability using both software as-a-service and platform as-a-service models that deliver the best of HPC and cloud computing to users at SNS.

Is neutron science research effectively partnering with supercomputing?

Shipman: Yes. The ADARA team has already built out the software and hardware infrastructure to support the use of NCCS HPC systems by scientists at SNS. Our next steps will include coupling the live streaming capability with modeling and simulation, enabling real-time analysis of experiments, such as fitting of the experiment data to a model of the material in the experiment. This will enable an entirely new level of real-time feedback from experiments at SNS. In the future, this and techniques that leverage the coupling of experiment and simulation will enable systems at the Oak Ridge Leadership Computing Facility (OLCF) to steer the experiment, providing the scientist with real-time information from a simulation of the material that they can use to more efficiently conduct the experiment at SNS. In fact, we have begun the initial steps of this work through the Center for Accelerated Materials Modeling, led by Mark Hagen, NDAV group lead.

Through this and other upcoming work, we see a future in which the Titan multi-petaflop platform at the OLCF could be steering an experiment based on intercomparison of simulation of a material with neutron data captured at SNS. This coupling of neutrons and computation could provide new breakthroughs in materials science, biology, and engineering, while significantly improving the productivity of our users.

What and who got this started?

Shipman: Jeff Nichols, the associate Laboratory director for the CCSD, and Kelly Beierschmitt, the associate Laboratory director for NScD, recognized the importance of coupling computation and neutron science. They realized that by doing so we could make significant progress in increasing the productivity of scientists at SNS and ultimately develop new capabilities in multiple science domains that use neutrons and computing.

The ADARA project has required expertise in both computing and neutron science. The computing team doesn’t have the science background in neutrons but does have the software/engineering background required to help build the system. So in collaboration, leveraging previous work that the neutron sciences data team had done, the ADARA team was able to extend those concepts and write new software to deliver a streaming infrastructure and an integrated HPC capability at SNS. Although we have made significant progress through the ADARA project, this is just the beginning of a long-term strategic partnership between computing and neutron science here at ORNL, a partnership enabled by the Laboratory’s multi-program science and technology capabilities.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Topological Quantum Superconductor Progress Reported

February 20, 2018

Overcoming sensitivity to decoherence is a persistent stumbling block in efforts to build effective quantum computers. Now, a group of researchers from Chalmers University of Technology (Sweden) report progress in devisi Read more…

By John Russell

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This