The New Breed of Accelerators from NVIDIA, Intel and AMD Square Off

By Michael Feldman

December 6, 2012

With the recent introduction of Intel’s first Xeon Phi coprocessors, NVIDIA’s latest Kepler GPUs, and AMD’s new FirePro S10000 graphics cards, the competition for HPC chip componentry has entered a new phase. The three chipmakers have taken somewhat different paths, though, and it will be up to the market to decide which vendor’s approach will win the day.

It is tempting to think that there might be room for all three accelerator designs in the market, but as it stands today that’s unlikely. The HPC space is too small and homogeneous to support that much architectural diversity. Just consider how the CPU side has, for the most part, consolidated to a single ISA (the x86), and to a large degree, a single vendor (Intel). While there may be a case to be made that these accelerators can offer different advantages for different applications, in their current incarnation they all are built principally as vector accelerators for CPU hosts.

That implies that the chip design that does that best, that is, delivers the most application FLOPS per dollar and per watt, will be the HPC consumer’s top choice – unless you believe that one or the other of these platforms will be substantially easier to program than the others. We’ll get to that particular aspect in a moment.

First though, it’s worthwhile just looking at the specs for the three accelerators. All of them offer teraflop-plus double precision performance with several gigabytes of ECC memory, but not all with the same power draw. And it’s the performance-per-watt that is most likely to become the driving criteria for many HPC users as they try to squeeze maximum FLOPS from a static datacenter power supply.

The NVIDIA Tesla K20X is the one to beat in this regard. It offers 1.3 teraflops in a 235 watt package – so 5.6 gigaflops/watt. Intel’s new “Knights Corner” Xeon Phi, the 5110P, delivers 1.011 teraflops with a TDP of 225 watts, which works out to 4.5 gigaflops/watt. The AMD FirePro S10000 card that sports two “Tahiti” GPUs, is rated at 1.48 teraflops. But the FirePro draws 375 watts, so its 3.9 gigaflops/watt is actually the lowest of the bunch.

The FirePro does somewhat better in the single precision FP department, delivering 15.8 gigaflops/watt to the K20X’s 16.8 gigaflops/watt and the 5110P’s 9.0 gigaflops/watt (estimated). But if you’re really focused on single precision performance, the go-to device is the NVIDIA K10, which delivers over 20 gigaflops/watt.

Memory-wise, the Intel 5110P is tops with 8 GB and 320 GB/sec of bandwidth. The K20X is supplied with 6 GB and 250 GB/sec, so less capacity, but with roughly the same bandwidth per byte. The new FirePro is also equipped with 6 GB, but at 450 GB/sec, offers considerably more bandwidth. That’s all with ECC turned off, though, so your actual mileage will vary depending on the error correction smarts on each of these platforms.

It’s not surprising that NVIDIA’s silicon specs out so well here. They’ve been the dominant player in the accelerator business for the last several years and have spent a lot of time designing the devices for this role. But the hardware alone will not be the sole determinant. Porting applications to these accelerators and getting them to draw on those abundant FLOPS will be the biggest challenge.

It is here that Intel believes it has an advantage. The company’s line has been that existing programs, using just standard MPI and OpenMP as the framework for parallelism, will port to the Xeon Phi platform with a simple recompile and link. And while that’s true, that doesn’t necessarily guarantee good performance. In fact, it is more than likely that porting applications that lend themselves to vector acceleration on Xeon Phi will have to be modified in ways not so different than what is done for GPUs – namely splitting the code across the CPU and accelerator, such that performance is optimized across the serial and parallel parts of the application.

Until there are a number of well-known HPC applications running on the Xeon Phi, proof of easy porting with impressive performance are just claims. And in any case, OpenMP’s new accelerator directives are supposed to level the software playing field across all these platforms – at least with regard to a standard high-level software framework. As of today, though, that standard has not been ratified and it’s not clear if GPUs will be supported adequately on the initial go-around, which, given the current accelerator landscape, sort of defeats the purpose for a hardware-independent API.

This is just the beginning of the accelerator era of high performance computing, or perhaps more accurately, the end of the beginning. Especially with Intel’s entrance into the space, the accelerator model for high performance computing has been legitimized in a way that NVIDIA could not have done on its own. And while accelerators are not the be-all and end-all of HPC, right now they are driving much of the rapid performance gains we see in the industry.

That means the stakes are high for all three vendors. Whoever comes out on top is likely to establish itself as the dominant supercomputing chipmaker for the latter half of the petascale era and the first part of the exascale era, when the technology will almost certainly be integrated into the CPU die. With Intel, NVIDIA and AMD now focusing more interest in their accelerator lines, we’re apt to see an even more rapid evolution of the hardware and the software.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Intel Open Sources All Lustre Work, Brent Gorda Exits

April 19, 2017

In a letter to the Lustre community posted on the Intel website, Vice President of Intel's Data Center Group Trish Damkroger writes that effective immediately the company will be contributing all Lustre development to the open source community. Damkroger also announced that Brent Gorda, General Manager, High Performance Data Division at Intel is leaving the company. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC and the Colocation Datacenter – a Bridge Too Far?

April 7, 2017

A more standardised HPC platform approach is making the running of HPC projects within increasing financial reach. Read more…

By Clive Longbottom, Quocirca

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This