The New Breed of Accelerators from NVIDIA, Intel and AMD Square Off

By Michael Feldman

December 6, 2012

With the recent introduction of Intel’s first Xeon Phi coprocessors, NVIDIA’s latest Kepler GPUs, and AMD’s new FirePro S10000 graphics cards, the competition for HPC chip componentry has entered a new phase. The three chipmakers have taken somewhat different paths, though, and it will be up to the market to decide which vendor’s approach will win the day.

It is tempting to think that there might be room for all three accelerator designs in the market, but as it stands today that’s unlikely. The HPC space is too small and homogeneous to support that much architectural diversity. Just consider how the CPU side has, for the most part, consolidated to a single ISA (the x86), and to a large degree, a single vendor (Intel). While there may be a case to be made that these accelerators can offer different advantages for different applications, in their current incarnation they all are built principally as vector accelerators for CPU hosts.

That implies that the chip design that does that best, that is, delivers the most application FLOPS per dollar and per watt, will be the HPC consumer’s top choice – unless you believe that one or the other of these platforms will be substantially easier to program than the others. We’ll get to that particular aspect in a moment.

First though, it’s worthwhile just looking at the specs for the three accelerators. All of them offer teraflop-plus double precision performance with several gigabytes of ECC memory, but not all with the same power draw. And it’s the performance-per-watt that is most likely to become the driving criteria for many HPC users as they try to squeeze maximum FLOPS from a static datacenter power supply.

The NVIDIA Tesla K20X is the one to beat in this regard. It offers 1.3 teraflops in a 235 watt package – so 5.6 gigaflops/watt. Intel’s new “Knights Corner” Xeon Phi, the 5110P, delivers 1.011 teraflops with a TDP of 225 watts, which works out to 4.5 gigaflops/watt. The AMD FirePro S10000 card that sports two “Tahiti” GPUs, is rated at 1.48 teraflops. But the FirePro draws 375 watts, so its 3.9 gigaflops/watt is actually the lowest of the bunch.

The FirePro does somewhat better in the single precision FP department, delivering 15.8 gigaflops/watt to the K20X’s 16.8 gigaflops/watt and the 5110P’s 9.0 gigaflops/watt (estimated). But if you’re really focused on single precision performance, the go-to device is the NVIDIA K10, which delivers over 20 gigaflops/watt.

Memory-wise, the Intel 5110P is tops with 8 GB and 320 GB/sec of bandwidth. The K20X is supplied with 6 GB and 250 GB/sec, so less capacity, but with roughly the same bandwidth per byte. The new FirePro is also equipped with 6 GB, but at 450 GB/sec, offers considerably more bandwidth. That’s all with ECC turned off, though, so your actual mileage will vary depending on the error correction smarts on each of these platforms.

It’s not surprising that NVIDIA’s silicon specs out so well here. They’ve been the dominant player in the accelerator business for the last several years and have spent a lot of time designing the devices for this role. But the hardware alone will not be the sole determinant. Porting applications to these accelerators and getting them to draw on those abundant FLOPS will be the biggest challenge.

It is here that Intel believes it has an advantage. The company’s line has been that existing programs, using just standard MPI and OpenMP as the framework for parallelism, will port to the Xeon Phi platform with a simple recompile and link. And while that’s true, that doesn’t necessarily guarantee good performance. In fact, it is more than likely that porting applications that lend themselves to vector acceleration on Xeon Phi will have to be modified in ways not so different than what is done for GPUs – namely splitting the code across the CPU and accelerator, such that performance is optimized across the serial and parallel parts of the application.

Until there are a number of well-known HPC applications running on the Xeon Phi, proof of easy porting with impressive performance are just claims. And in any case, OpenMP’s new accelerator directives are supposed to level the software playing field across all these platforms – at least with regard to a standard high-level software framework. As of today, though, that standard has not been ratified and it’s not clear if GPUs will be supported adequately on the initial go-around, which, given the current accelerator landscape, sort of defeats the purpose for a hardware-independent API.

This is just the beginning of the accelerator era of high performance computing, or perhaps more accurately, the end of the beginning. Especially with Intel’s entrance into the space, the accelerator model for high performance computing has been legitimized in a way that NVIDIA could not have done on its own. And while accelerators are not the be-all and end-all of HPC, right now they are driving much of the rapid performance gains we see in the industry.

That means the stakes are high for all three vendors. Whoever comes out on top is likely to establish itself as the dominant supercomputing chipmaker for the latter half of the petascale era and the first part of the exascale era, when the technology will almost certainly be integrated into the CPU die. With Intel, NVIDIA and AMD now focusing more interest in their accelerator lines, we’re apt to see an even more rapid evolution of the hardware and the software.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is enjoying a prosperity seen only every few decades, one driven Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, produ Read more…

By John Russell

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

New Data Management Techniques for Intelligent Simulations

The trend in high performance supercomputer design has evolved – from providing maximum compute capability for complex scalable science applications, to capacity computing utilizing efficient, cost-effective computing power for solving a small number of large problems or a large number of small problems. Read more…

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is en Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This