HPC as a Service: Lessons Learned

By Wolfgang Gentzsch and Burak Yenier

December 10, 2012

After a fast-paced three months, round 1 of the HPC Experiment (also known as the Uber-Cloud Experiment) concluded last month, with more than 160 participating organizations and individuals from 25 countries, working together in 25 international teams. In this article we present their main findings, challenges, and their lessons learned.

The aim of the Uber-Cloud Experiment is to explore the end-to-end process of accessing remote computing resources in HPC centers and in HPC clouds as well as to study and overcome the potential roadblocks.

The experiment kicked off in July 2012 and brought together four categories of participants: the industry end-users with their applications, the software providers, the computing and storage resource providers, and the experts. We set up an end-user project by first selecting an end-user and his software provider, assigning an HPC/CAE expert, and matching a suitable resource provider to complete the team. Each team’s goal was to complete the project, and to chart the way around the hurdles they identified.

End users can achieve many benefits by gaining access to additional compute resources beyond their current internal resources, such as workstations. Arguably the most important two are the benefits of agility gained by speeding up product design cycles through shorter simulation run times, and those gained by the superior quality achieved by simulating more sophisticated geometries or physics, or by running many more iterations to look for the best product design.

Tangible benefits like these make HPC and more specifically HPC-as-a-Service (HPCaaS) very attractive. But how far are we from an ideal HPCaaS or HPC in the cloud model?

Honestly, at this point, we don’t know. However, in the course of this experiment, following each team and monitoring its challenges and progress, we’ve collected some excellent insight into these roadblocks and how our 25 teams have tackled them.

The main approach for this experiment is to look at the end-users’ project and select the appropriate resources, software and expertise that match those requirements.

During the three months of the experiment, we were able to build 25 teams each with a project proposed by an end user. These teams were: Team Anchor Bolt, Team Resonance, Team Radiofrequency, Team Supersonic, Team Liquid-Gas, Team Wing-Flow, Team Ship-Hull, Team Cement-Flows, Team Sprinkler, Team Space Capsule, Team Car Acoustics, Team Dosimetry, Team Weathermen, Team Wind Turbine, Team Combustion, Team Blood Flow, Team Turbo-Machinery, Team Gas Bubbles, Team Side impact, Team ColombiaBio, and Team Cellphone.

The final report, available to all of our registered participants, contains the use cases of many of the teams offering valuable insight through their own words. We look forward to future rounds of the experiment where this accumulating knowledge will yield ever more successful projects.

We recognize that every end-user project requires a slightly different approach, a variety of software and compute resources, a certain expertise to lead the end-to-end process, and a tailored schedule. To be able to keep the entire experiment consistent we asked each team to follow a common roadmap. The expert assigned to each team is the guide in following this roadmap. It calls for communication with the organizers at certain points, although generally the teams are autonomous and make their own decisions.

Based on the roadmap we defined going into round 1 of the experiment, the teams followed six steps to reach their goal:

Step 1. Define the end-user project. The end-user together with the expert and software provider jointly defined the project. Based on this information, as organizers we assigned the appropriate resources to the project.

Step 2. Contact the resource provider and set up the project environment. The expert contacted the computing resource and performed activities such as assisting in software and license installations, creation of user accounts, and configuration of the project environment.

Step 3. Initiate the end-user project execution. The expert assisted the end-user with uploading the necessary data, code and configuration files to the remote resource(s). The expert then worked with the resource provider to queue the project up on the HPC system.

Step 4. Monitor the project. The expert remained engaged with the resource providers and at any time had up to date information about the status of the project.

Step 5. Review results with the end-user. The expert assisted the end-user in downloading the results from the resource provider’s environment and discussed the results with the end-user. If any rework or rerun was required it was completed by executing steps 2-5 again.

Step 6. Document findings. During the entire lifecycle of the project, there occurred hurdles, friction and failure points and the expert documented these findings.

Intentionally, we performed the first round of this experiment manually, that is, not via an automated service, because we believe the technology is not the challenge anymore; rather it’s the people and their processes, and that’s what we wanted to explore. We are continuously improving the roadmap to successful completion of our projects.

The teams reported the following main roadblocks and provided information on how they resolved them (or not):

  • Security and privacy, guarding the raw data, processing models and the results
  • Unpredictable costs can be a major problem in securing a budget for a given project
  • Lack of easy, intuitive self-service registration and administration
  • Incompatible software licensing models hinder adoption of Computing-as-a-Service
  • High expectations can lead to disappointing results
  • Lack of reliability and availability of resources can lead to long delays

Just like all other participants, we as the organizers, treated the experiment as a learning opportunity. In our report we have also summarized what we’ve found to be shortcomings of the experiment as we put it together in round 1. Learning from these shortcomings we have improved the experiment for round 2. To be specific, we discussed and provided solutions for the following shortcomings:

All participants are professionals with busy schedules and the experiment is not their primary job, so they could only dedicate a few hours per week to the experiment

  • Vacations delayed most of the teams’ progress, especially in the beginning (August) of the Experiment
  • Some resource providers ran into resource crunches which delayed team projects
  • Some of our projects ran into long delays since the project and the resource provider weren’t the best match possible
  • Some resource providers struggled with the installation of an application
  • Other resource providers had difficulties with providing network access through complex network connections
  • Resource providers differ in their service philosophies
  • Simply getting started was a challenge
  • A few teams struggled with figuring out which team member needs to do what and when
  • Team forming was one of the steps, which took the longest amount of time, each team member needed to exchange significant amounts of information about their background, capabilities, expectations, availability, and commitment levels with one another before the project could even kick off
  • Finally, manual processes are just slow; they consumed days, sometimes weeks especially because the various technology and people resources were inherently remote, each with different priorities

We hope that our participants will extract value out of the experiment and the final report. They certainly deserve to do so in return for their generous contributions, support and participation. We now look forward to round 2 of the experiment with its already over 250 participants and the learning that it will result in.

If you are interested in participating in round 2 or just want to monitor its progress, you can register at http://hpcexperiment.com.  You can also go there to get the final report for round 1, which details the results and recommendations.

About the Authors

Wolfgang Gentzsch and Burak Yenier are the creators and facilitators of the Uber-Cloud Experiment. Wolfgang is an HPC veteran. Having worked in leading positions in research, academia and industry for some 30 years, Wolfgang is now an HPC consultant and the chairman of the ISC Cloud conference series for HPC and Big Data in the Cloud. Burak is the vice president of operations at CashEdge, a software-as-a-service company in Silicon Valley, which provides innovative payments and aggregation solutions to financial institutions.


Related Articles

Half-Time in the Uber-Cloud

The Uber-Cloud Experiment

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Ohio Supercomputer Center Dedicates ‘Owens’ Cluster

March 29, 2017

In a dedication ceremony held earlier today (March 29), officials from Ohio Supercomputer Center (OSC) along with state representatives gathered to celebrate the launch of OSC’s newest cluster: Read more…

By Tiffany Trader

EU Ratchets up the Race to Exascale Computing

March 29, 2017

The race to expand HPC infrastructure, including exascale machines, to advance national and regional interests ratcheted up a notch yesterday with announcement that seven European countries – Read more…

By John Russell

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging the Power of Big Data to Improve Customer Satisfaction & Brand Loyalty

In the dynamic world of retail, retailers must find ways to recognize and effectively respond to shopping behaviors, patterns, and trends in order to succeed. Read more…

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This