HPC as a Service: Lessons Learned

By Wolfgang Gentzsch and Burak Yenier

December 10, 2012

After a fast-paced three months, round 1 of the HPC Experiment (also known as the Uber-Cloud Experiment) concluded last month, with more than 160 participating organizations and individuals from 25 countries, working together in 25 international teams. In this article we present their main findings, challenges, and their lessons learned.

The aim of the Uber-Cloud Experiment is to explore the end-to-end process of accessing remote computing resources in HPC centers and in HPC clouds as well as to study and overcome the potential roadblocks.

The experiment kicked off in July 2012 and brought together four categories of participants: the industry end-users with their applications, the software providers, the computing and storage resource providers, and the experts. We set up an end-user project by first selecting an end-user and his software provider, assigning an HPC/CAE expert, and matching a suitable resource provider to complete the team. Each team’s goal was to complete the project, and to chart the way around the hurdles they identified.

End users can achieve many benefits by gaining access to additional compute resources beyond their current internal resources, such as workstations. Arguably the most important two are the benefits of agility gained by speeding up product design cycles through shorter simulation run times, and those gained by the superior quality achieved by simulating more sophisticated geometries or physics, or by running many more iterations to look for the best product design.

Tangible benefits like these make HPC and more specifically HPC-as-a-Service (HPCaaS) very attractive. But how far are we from an ideal HPCaaS or HPC in the cloud model?

Honestly, at this point, we don’t know. However, in the course of this experiment, following each team and monitoring its challenges and progress, we’ve collected some excellent insight into these roadblocks and how our 25 teams have tackled them.

The main approach for this experiment is to look at the end-users’ project and select the appropriate resources, software and expertise that match those requirements.

During the three months of the experiment, we were able to build 25 teams each with a project proposed by an end user. These teams were: Team Anchor Bolt, Team Resonance, Team Radiofrequency, Team Supersonic, Team Liquid-Gas, Team Wing-Flow, Team Ship-Hull, Team Cement-Flows, Team Sprinkler, Team Space Capsule, Team Car Acoustics, Team Dosimetry, Team Weathermen, Team Wind Turbine, Team Combustion, Team Blood Flow, Team Turbo-Machinery, Team Gas Bubbles, Team Side impact, Team ColombiaBio, and Team Cellphone.

The final report, available to all of our registered participants, contains the use cases of many of the teams offering valuable insight through their own words. We look forward to future rounds of the experiment where this accumulating knowledge will yield ever more successful projects.

We recognize that every end-user project requires a slightly different approach, a variety of software and compute resources, a certain expertise to lead the end-to-end process, and a tailored schedule. To be able to keep the entire experiment consistent we asked each team to follow a common roadmap. The expert assigned to each team is the guide in following this roadmap. It calls for communication with the organizers at certain points, although generally the teams are autonomous and make their own decisions.

Based on the roadmap we defined going into round 1 of the experiment, the teams followed six steps to reach their goal:

Step 1. Define the end-user project. The end-user together with the expert and software provider jointly defined the project. Based on this information, as organizers we assigned the appropriate resources to the project.

Step 2. Contact the resource provider and set up the project environment. The expert contacted the computing resource and performed activities such as assisting in software and license installations, creation of user accounts, and configuration of the project environment.

Step 3. Initiate the end-user project execution. The expert assisted the end-user with uploading the necessary data, code and configuration files to the remote resource(s). The expert then worked with the resource provider to queue the project up on the HPC system.

Step 4. Monitor the project. The expert remained engaged with the resource providers and at any time had up to date information about the status of the project.

Step 5. Review results with the end-user. The expert assisted the end-user in downloading the results from the resource provider’s environment and discussed the results with the end-user. If any rework or rerun was required it was completed by executing steps 2-5 again.

Step 6. Document findings. During the entire lifecycle of the project, there occurred hurdles, friction and failure points and the expert documented these findings.

Intentionally, we performed the first round of this experiment manually, that is, not via an automated service, because we believe the technology is not the challenge anymore; rather it’s the people and their processes, and that’s what we wanted to explore. We are continuously improving the roadmap to successful completion of our projects.

The teams reported the following main roadblocks and provided information on how they resolved them (or not):

  • Security and privacy, guarding the raw data, processing models and the results
  • Unpredictable costs can be a major problem in securing a budget for a given project
  • Lack of easy, intuitive self-service registration and administration
  • Incompatible software licensing models hinder adoption of Computing-as-a-Service
  • High expectations can lead to disappointing results
  • Lack of reliability and availability of resources can lead to long delays

Just like all other participants, we as the organizers, treated the experiment as a learning opportunity. In our report we have also summarized what we’ve found to be shortcomings of the experiment as we put it together in round 1. Learning from these shortcomings we have improved the experiment for round 2. To be specific, we discussed and provided solutions for the following shortcomings:

All participants are professionals with busy schedules and the experiment is not their primary job, so they could only dedicate a few hours per week to the experiment

  • Vacations delayed most of the teams’ progress, especially in the beginning (August) of the Experiment
  • Some resource providers ran into resource crunches which delayed team projects
  • Some of our projects ran into long delays since the project and the resource provider weren’t the best match possible
  • Some resource providers struggled with the installation of an application
  • Other resource providers had difficulties with providing network access through complex network connections
  • Resource providers differ in their service philosophies
  • Simply getting started was a challenge
  • A few teams struggled with figuring out which team member needs to do what and when
  • Team forming was one of the steps, which took the longest amount of time, each team member needed to exchange significant amounts of information about their background, capabilities, expectations, availability, and commitment levels with one another before the project could even kick off
  • Finally, manual processes are just slow; they consumed days, sometimes weeks especially because the various technology and people resources were inherently remote, each with different priorities

We hope that our participants will extract value out of the experiment and the final report. They certainly deserve to do so in return for their generous contributions, support and participation. We now look forward to round 2 of the experiment with its already over 250 participants and the learning that it will result in.

If you are interested in participating in round 2 or just want to monitor its progress, you can register at http://hpcexperiment.com.  You can also go there to get the final report for round 1, which details the results and recommendations.

About the Authors

Wolfgang Gentzsch and Burak Yenier are the creators and facilitators of the Uber-Cloud Experiment. Wolfgang is an HPC veteran. Having worked in leading positions in research, academia and industry for some 30 years, Wolfgang is now an HPC consultant and the chairman of the ISC Cloud conference series for HPC and Big Data in the Cloud. Burak is the vice president of operations at CashEdge, a software-as-a-service company in Silicon Valley, which provides innovative payments and aggregation solutions to financial institutions.


Related Articles

Half-Time in the Uber-Cloud

The Uber-Cloud Experiment

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This