HPC as a Service: Lessons Learned

By Wolfgang Gentzsch and Burak Yenier

December 10, 2012

After a fast-paced three months, round 1 of the HPC Experiment (also known as the Uber-Cloud Experiment) concluded last month, with more than 160 participating organizations and individuals from 25 countries, working together in 25 international teams. In this article we present their main findings, challenges, and their lessons learned.

The aim of the Uber-Cloud Experiment is to explore the end-to-end process of accessing remote computing resources in HPC centers and in HPC clouds as well as to study and overcome the potential roadblocks.

The experiment kicked off in July 2012 and brought together four categories of participants: the industry end-users with their applications, the software providers, the computing and storage resource providers, and the experts. We set up an end-user project by first selecting an end-user and his software provider, assigning an HPC/CAE expert, and matching a suitable resource provider to complete the team. Each team’s goal was to complete the project, and to chart the way around the hurdles they identified.

End users can achieve many benefits by gaining access to additional compute resources beyond their current internal resources, such as workstations. Arguably the most important two are the benefits of agility gained by speeding up product design cycles through shorter simulation run times, and those gained by the superior quality achieved by simulating more sophisticated geometries or physics, or by running many more iterations to look for the best product design.

Tangible benefits like these make HPC and more specifically HPC-as-a-Service (HPCaaS) very attractive. But how far are we from an ideal HPCaaS or HPC in the cloud model?

Honestly, at this point, we don’t know. However, in the course of this experiment, following each team and monitoring its challenges and progress, we’ve collected some excellent insight into these roadblocks and how our 25 teams have tackled them.

The main approach for this experiment is to look at the end-users’ project and select the appropriate resources, software and expertise that match those requirements.

During the three months of the experiment, we were able to build 25 teams each with a project proposed by an end user. These teams were: Team Anchor Bolt, Team Resonance, Team Radiofrequency, Team Supersonic, Team Liquid-Gas, Team Wing-Flow, Team Ship-Hull, Team Cement-Flows, Team Sprinkler, Team Space Capsule, Team Car Acoustics, Team Dosimetry, Team Weathermen, Team Wind Turbine, Team Combustion, Team Blood Flow, Team Turbo-Machinery, Team Gas Bubbles, Team Side impact, Team ColombiaBio, and Team Cellphone.

The final report, available to all of our registered participants, contains the use cases of many of the teams offering valuable insight through their own words. We look forward to future rounds of the experiment where this accumulating knowledge will yield ever more successful projects.

We recognize that every end-user project requires a slightly different approach, a variety of software and compute resources, a certain expertise to lead the end-to-end process, and a tailored schedule. To be able to keep the entire experiment consistent we asked each team to follow a common roadmap. The expert assigned to each team is the guide in following this roadmap. It calls for communication with the organizers at certain points, although generally the teams are autonomous and make their own decisions.

Based on the roadmap we defined going into round 1 of the experiment, the teams followed six steps to reach their goal:

Step 1. Define the end-user project. The end-user together with the expert and software provider jointly defined the project. Based on this information, as organizers we assigned the appropriate resources to the project.

Step 2. Contact the resource provider and set up the project environment. The expert contacted the computing resource and performed activities such as assisting in software and license installations, creation of user accounts, and configuration of the project environment.

Step 3. Initiate the end-user project execution. The expert assisted the end-user with uploading the necessary data, code and configuration files to the remote resource(s). The expert then worked with the resource provider to queue the project up on the HPC system.

Step 4. Monitor the project. The expert remained engaged with the resource providers and at any time had up to date information about the status of the project.

Step 5. Review results with the end-user. The expert assisted the end-user in downloading the results from the resource provider’s environment and discussed the results with the end-user. If any rework or rerun was required it was completed by executing steps 2-5 again.

Step 6. Document findings. During the entire lifecycle of the project, there occurred hurdles, friction and failure points and the expert documented these findings.

Intentionally, we performed the first round of this experiment manually, that is, not via an automated service, because we believe the technology is not the challenge anymore; rather it’s the people and their processes, and that’s what we wanted to explore. We are continuously improving the roadmap to successful completion of our projects.

The teams reported the following main roadblocks and provided information on how they resolved them (or not):

  • Security and privacy, guarding the raw data, processing models and the results
  • Unpredictable costs can be a major problem in securing a budget for a given project
  • Lack of easy, intuitive self-service registration and administration
  • Incompatible software licensing models hinder adoption of Computing-as-a-Service
  • High expectations can lead to disappointing results
  • Lack of reliability and availability of resources can lead to long delays

Just like all other participants, we as the organizers, treated the experiment as a learning opportunity. In our report we have also summarized what we’ve found to be shortcomings of the experiment as we put it together in round 1. Learning from these shortcomings we have improved the experiment for round 2. To be specific, we discussed and provided solutions for the following shortcomings:

All participants are professionals with busy schedules and the experiment is not their primary job, so they could only dedicate a few hours per week to the experiment

  • Vacations delayed most of the teams’ progress, especially in the beginning (August) of the Experiment
  • Some resource providers ran into resource crunches which delayed team projects
  • Some of our projects ran into long delays since the project and the resource provider weren’t the best match possible
  • Some resource providers struggled with the installation of an application
  • Other resource providers had difficulties with providing network access through complex network connections
  • Resource providers differ in their service philosophies
  • Simply getting started was a challenge
  • A few teams struggled with figuring out which team member needs to do what and when
  • Team forming was one of the steps, which took the longest amount of time, each team member needed to exchange significant amounts of information about their background, capabilities, expectations, availability, and commitment levels with one another before the project could even kick off
  • Finally, manual processes are just slow; they consumed days, sometimes weeks especially because the various technology and people resources were inherently remote, each with different priorities

We hope that our participants will extract value out of the experiment and the final report. They certainly deserve to do so in return for their generous contributions, support and participation. We now look forward to round 2 of the experiment with its already over 250 participants and the learning that it will result in.

If you are interested in participating in round 2 or just want to monitor its progress, you can register at http://hpcexperiment.com.  You can also go there to get the final report for round 1, which details the results and recommendations.

About the Authors

Wolfgang Gentzsch and Burak Yenier are the creators and facilitators of the Uber-Cloud Experiment. Wolfgang is an HPC veteran. Having worked in leading positions in research, academia and industry for some 30 years, Wolfgang is now an HPC consultant and the chairman of the ISC Cloud conference series for HPC and Big Data in the Cloud. Burak is the vice president of operations at CashEdge, a software-as-a-service company in Silicon Valley, which provides innovative payments and aggregation solutions to financial institutions.


Related Articles

Half-Time in the Uber-Cloud

The Uber-Cloud Experiment

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This