BP Brings Petascale Computing to Oil and Gas Industry

By Michael Feldman

December 12, 2012

British multinational BP revealed it is building a new datacenter in Houston to house a 2-petaflop supercomputer. When installed in 2013, it will likely be the most powerful system deployed by a commercial entity, at least of the ones that have been publicly revealed. The upcoming petaflopper will support the company’s oil and gas exploration efforts and other research objectives.

According to the press release, BP’s existing datacenter in Houston has topped out in power and cooling capacity, so a new high performance computing facility was needed in order to support the company’s expanding HPC footprint. The new one will also be located in Houston and is scheduled to open sometime around the middle of next year.

It will house compute and storage systems devoted to processing BP’s voluminous set of seismic data collected around the world. It will also support “rock physics,” which will enable company scientists to produce images of rock structures deep underground – all of this to help BP locate and exploit new oil and gas resources.

The future center and supercomputer will put BP’s HPC infrastructure on par with that of national labs. At 110,000 square feet, the new facility will actually be larger than the recent 95,000 square-foot datacenter built for NCSA’s 11.5-petaflop Blue Waters supercomputer. To go along with the 2 petaflops of peak number-crunching capability, the future BP machine will also be outfitted with 536 terabytes of memory and 23.5 petabytes of external disk storage.

The upcoming BP super will apparently be getting all its FLOPs from CPUs, about 67,000 of them according to the official announcement. In an email interview with HPCwire, Keith Gray, BP’s HPC center manager, said they are not quite ready to make the jump to heterogeneous computing. “We continue to test accelerators,” wrote Gray, “but have not built a strong business case for our complete application base.”

“We must create a competitive environment to maximize the capabilities we will deliver,” he continued. “Our researchers want to test their ideas on real problems at scale. They want to increase the resolution and complexity. We need to be flexible and take advantage of what the market can deliver.”

The existing HPC setup at BP provides an aggregate peak performance of more than 1.2 petaflops. It consists of multiple clusters based on a variety of Intel Xeon-powered clusters, including of 2,912 HP SL230 nodes (8-core 2.6 GHz Sandy Bridge CPUs), 1,920 Dell C6100 nodes (6-core 2.6 GHz Westmere CPUs), and 50 HP DL580 nodes (2.3 GHz Westmere EX CPUs). The core network in their current datacenter is Ethernet and is provided is by Arista, while their storage systems have been gathered from various vendors, including Panasas, IBM, and DataDirect Networks.

The largest MPI applications used at BP can scale to more than 30,000 cores, so the new system will give them plenty of headroom for expansion. It will also allow multiple large jobs to be processed in parallel. “Projects that currently run overnight can now be run twice a day – letting us try more ideas,” explained Gray. “If a project takes six months, we might choose to defer it. If we can complete in three months, we may choose to proceed.”

BP says its processing needs have increased 10,000-fold since 1999. Seismic imaging that would have taken four years of computing time a decade ago can now be accomplished in an hour. The increase in processing power over this period has transformed oil and gas exploration, allowing major new finds at a time when many were predicting that most of world’s reserves had been located.

With oil pushing $100 per barrel, there is plenty of incentive for these companies to be investing in technologies that can uncover new reserves. For its part, BP has doubled HPC spending over the last few years and intends to keep that investment on an upward slope. The company is planning to test 15 new oil and gas sites over the next three years, and it expects that at least some of its 35 exploration wells will each yield an equivalent of a quarter billion barrels of oil.

BP claims that its 2-petaflop system will be the largest such machine employed for commercial purposes. That may or may not be the case, since not all commercial supercomputing deployments are made public, especially in the financial services realm and the oil and gas industry. These just happen to be the two industries that have the wherewithal and the monetary incentives to buy top-of-the-line supercomputers. But, for competitive reasons, not all of them want to reveal the technology they are using to drive revenue.

In the current TOP500 rankings, the fastest Linpack machine that was obtained without the help of government funds is a 461 teraflop cluster for a non-specified geosciences firm. It sits at number 44 on the November 2012 list. This one from BP will be four times as powerful and would land it in the top 10 today.

While petaflop-plus computing is not commonplace yet, even in the government sector, BP’s plans are yet another indication that the petascale era is in full swing. And although there are only about 50 such machines in the world today, with the advent of teraflop accelerators and ever more powerful CPUs, such computing should become much more prevalent in the commercial arena and elsewhere over the next few years.

[The original version of this article erroneously referred to the Blue Waters supercomputer employing Xeon Phi processors. As of today, Stampede is the only petascale Phi-powered system. The original text also mistakenly talked about oil at $100 per gallon oil, rather than $100 per barrel. We regret the errors — Editor]

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitiv Read more…

By John Russell

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This