Polish HPC Consortium Boosts Prospects for Local Scientists

By Nicole Hemsoth

January 2, 2013

Poland is not usually thought of as a supercomputing powerhouse. Until recently, most of the local research and academic centers housed only modest-sized HPC clusters for Polish researchers. That is now changing with the POWIEW project, a consortium devoted to bringing world-class high performance computing to the nation’s scientists.

POWIEW provides five state-of-the art systems, based on the latest processor technology from Intel, AMD, IBM, and NVIDIA. The machines are spread across the consortium’s three member organizations: the Interdisciplinary Centre for Mathematical and Computational Modeling (ICM) in Warsaw, Krakow’s Academic Computer Centre (CYFRONET), and the Poznan Supercomputing and Networking Center (PSNC).

We asked Maciej Filocha, POWIEW’s project manager and director of its HPC division, to describe the impetus behind the organization and how they serve local researchers and scientists.

HPCwire: Can you describe the mission of POWIEW and the rationale for developing an indigenous supercomputing project for Poland?

Maciej Filocha: The POWIEW project sets up a unified strategy concept for the HPC development in Poland addressing research and academia. It encompasses a program of significant computational infrastructure enhancement, associated R&D programs and graduate and postgraduate education.

Since the early 2000s, the Polish HPC ecosystem was dominated by capacity-level cluster solutions — still relevant for many scientists, but obviously less so for “real” large-scale parallelism. To ensure competitiveness and attractiveness of Polish research organizations, local computational infrastructure was to be enhanced accordingly.

HPCwire: How do Polish scientists and researchers view the significance of HPC for their work?

Filocha: The POWIEW consortium consists of three leading research and academic HPC centers, founded about 20 years ago. From the beginning, the number of users has been growing and includes representatives of “classical” computational and life sciences as well as material sciences, engineering and environmental sciences.

HPCwire: What’s the level of funding for the project and where does it come from?

Filocha: The project is founded by the EU from the Innovative Economy Programme (85 percent), complemented by domestic sources (15 percent), with total budget of about 23 million euros (17 million USD). This covers not only acquisition and deployment of new computing systems but also R&D activities related to porting and optimization of selected codes for new architectures and general enabling actions.

HPCwire: What supercomputers are currently up and running at POWIEW, and how are they being used?

Filocha: The POWIEW Project focuses on two major HPC application areas: massively parallel processing (MPP) that delivers high scalability in fine-grained parallelism and symmetric multiprocessing for intensively coarse-grain parallel computational applications.

For the MPP class, the Blue Gene/P solution was chosen and has been running for almost two years with a full system load. The Blue Gene/P system is maintained by the CM) in Warsaw. This architecture is particularly useful by material science and life science researchers for its performance with high scalability on MPI applications. The system is also heavily used by neuroscientists where it enables simulations of large neural networks with reasonable performance. Most of the jobs running on the Blue Gene/P utilize a few thousand CPU cores.

For the second class of systems two solutions were identified: the IBM Power775 system installed at ICM in Warsaw and the SGI Altix UV SMP machine at the PSNC in Poznan. Both systems use the fat-node approach with the SGI UV implementing “true” SMP — one super node — while the Power775 represents a cluster of super nodes.

The Power775 machine is currently in operation for almost one year. It is used for the most demanding workloads, including high resolution atmosphere studies for weather predictions and very large cosmological simulations. The system has proven its high performance for memory-intensive and computing-intensive tasks.

The SGI machine in Poznan, being also a PRACE Tier-1 site, is the only SMP system of comparable size in Poland. It is used for memory-intensive tasks including reservoir modeling and complex simulations in astrophysics.

As a third technology choice, hardware-accelerated clusters have been identified. Both HPC centers in Poznan, and CYFRONET in Cracow, installed accelerated clusters choosing GPGPU solutions. GPUs in Cracow constitute a part of the largest supercomputer in Poland. Accelerators are widely utilized there to optimize locally developed codes for quantum chemistry computations and complex dynamics in astrophysics applications.

Another installation is the SGI/Rackable system maintained by PSNC, using AMD x86 servers accelerated with NVIDIA GPU cards. It is used for computing intensive tasks in molecular modeling and fluid flow dynamics in porous media — reservoir modeling.

HPCwire: Why such a wide variety of architectures? Doesn’t that create problems for users who want to share applications across platforms?

Filocha: An underlying idea for POWIEW was to provide all existing key HPC architectures based on complementarity and competencies sharing among project partners. Project experts are expected to provide support to the researchers so as optimize their choice of suitable architectures.
HPCwire: Poland is a member of PRACE. How does POWIEW fit into that consortium?

Filocha: All POWIEW project members are actively involved in PRACE activities since their beginning. They work in applications, hardware and policy-related tasks. Selected systems deployed within POWIEW project are now included as a Tier-1 systems in current Distributed European Computing Initiative (DECI) calls. Some of our computers, including the IBM 775 system are the first of its kind available for PRACE users. Our experience of day-to-day use of such systems allowed us to contribute significantly to best practices guides for PRACE users.

HPCwire: As far as the future of POWIEW, what’s being planned: new systems, collaborations, new application areas…?

Filocha: Formally, POWIEW will run until mid-2013, but the actual goal is to extend the deployed hardware infrastructure and acquired software competencies further, based on experience gained during last three years of intensive growth.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This