Polish HPC Consortium Boosts Prospects for Local Scientists

By Nicole Hemsoth

January 2, 2013

Poland is not usually thought of as a supercomputing powerhouse. Until recently, most of the local research and academic centers housed only modest-sized HPC clusters for Polish researchers. That is now changing with the POWIEW project, a consortium devoted to bringing world-class high performance computing to the nation’s scientists.

POWIEW provides five state-of-the art systems, based on the latest processor technology from Intel, AMD, IBM, and NVIDIA. The machines are spread across the consortium’s three member organizations: the Interdisciplinary Centre for Mathematical and Computational Modeling (ICM) in Warsaw, Krakow’s Academic Computer Centre (CYFRONET), and the Poznan Supercomputing and Networking Center (PSNC).

We asked Maciej Filocha, POWIEW’s project manager and director of its HPC division, to describe the impetus behind the organization and how they serve local researchers and scientists.

HPCwire: Can you describe the mission of POWIEW and the rationale for developing an indigenous supercomputing project for Poland?

Maciej Filocha: The POWIEW project sets up a unified strategy concept for the HPC development in Poland addressing research and academia. It encompasses a program of significant computational infrastructure enhancement, associated R&D programs and graduate and postgraduate education.

Since the early 2000s, the Polish HPC ecosystem was dominated by capacity-level cluster solutions — still relevant for many scientists, but obviously less so for “real” large-scale parallelism. To ensure competitiveness and attractiveness of Polish research organizations, local computational infrastructure was to be enhanced accordingly.

HPCwire: How do Polish scientists and researchers view the significance of HPC for their work?

Filocha: The POWIEW consortium consists of three leading research and academic HPC centers, founded about 20 years ago. From the beginning, the number of users has been growing and includes representatives of “classical” computational and life sciences as well as material sciences, engineering and environmental sciences.

HPCwire: What’s the level of funding for the project and where does it come from?

Filocha: The project is founded by the EU from the Innovative Economy Programme (85 percent), complemented by domestic sources (15 percent), with total budget of about 23 million euros (17 million USD). This covers not only acquisition and deployment of new computing systems but also R&D activities related to porting and optimization of selected codes for new architectures and general enabling actions.

HPCwire: What supercomputers are currently up and running at POWIEW, and how are they being used?

Filocha: The POWIEW Project focuses on two major HPC application areas: massively parallel processing (MPP) that delivers high scalability in fine-grained parallelism and symmetric multiprocessing for intensively coarse-grain parallel computational applications.

For the MPP class, the Blue Gene/P solution was chosen and has been running for almost two years with a full system load. The Blue Gene/P system is maintained by the CM) in Warsaw. This architecture is particularly useful by material science and life science researchers for its performance with high scalability on MPI applications. The system is also heavily used by neuroscientists where it enables simulations of large neural networks with reasonable performance. Most of the jobs running on the Blue Gene/P utilize a few thousand CPU cores.

For the second class of systems two solutions were identified: the IBM Power775 system installed at ICM in Warsaw and the SGI Altix UV SMP machine at the PSNC in Poznan. Both systems use the fat-node approach with the SGI UV implementing “true” SMP — one super node — while the Power775 represents a cluster of super nodes.

The Power775 machine is currently in operation for almost one year. It is used for the most demanding workloads, including high resolution atmosphere studies for weather predictions and very large cosmological simulations. The system has proven its high performance for memory-intensive and computing-intensive tasks.

The SGI machine in Poznan, being also a PRACE Tier-1 site, is the only SMP system of comparable size in Poland. It is used for memory-intensive tasks including reservoir modeling and complex simulations in astrophysics.

As a third technology choice, hardware-accelerated clusters have been identified. Both HPC centers in Poznan, and CYFRONET in Cracow, installed accelerated clusters choosing GPGPU solutions. GPUs in Cracow constitute a part of the largest supercomputer in Poland. Accelerators are widely utilized there to optimize locally developed codes for quantum chemistry computations and complex dynamics in astrophysics applications.

Another installation is the SGI/Rackable system maintained by PSNC, using AMD x86 servers accelerated with NVIDIA GPU cards. It is used for computing intensive tasks in molecular modeling and fluid flow dynamics in porous media — reservoir modeling.

HPCwire: Why such a wide variety of architectures? Doesn’t that create problems for users who want to share applications across platforms?

Filocha: An underlying idea for POWIEW was to provide all existing key HPC architectures based on complementarity and competencies sharing among project partners. Project experts are expected to provide support to the researchers so as optimize their choice of suitable architectures.
HPCwire: Poland is a member of PRACE. How does POWIEW fit into that consortium?

Filocha: All POWIEW project members are actively involved in PRACE activities since their beginning. They work in applications, hardware and policy-related tasks. Selected systems deployed within POWIEW project are now included as a Tier-1 systems in current Distributed European Computing Initiative (DECI) calls. Some of our computers, including the IBM 775 system are the first of its kind available for PRACE users. Our experience of day-to-day use of such systems allowed us to contribute significantly to best practices guides for PRACE users.

HPCwire: As far as the future of POWIEW, what’s being planned: new systems, collaborations, new application areas…?

Filocha: Formally, POWIEW will run until mid-2013, but the actual goal is to extend the deployed hardware infrastructure and acquired software competencies further, based on experience gained during last three years of intensive growth.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

NSF Issues $60M RFP for “Towards a Leadership-Class” System

May 16, 2017

In case you missed it, the National Science Foundation issued the request for proposals (RFP) for the next ‘Towards a Leadership-Class Computing Facility – Read more…

By John Russell

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Microsoft Azure Will Debut Pascal GPU Instances This Year

May 8, 2017

As Nvidia's GPU Technology Conference gets underway in San Jose, Calif., Microsoft today revealed plans to add Pascal-generation GPU horsepower to its Azure clo Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This