Student Projects Highlight Cloud’s Potential

By Jose Luis Vazquez-Poletti

January 4, 2013

If ideas are what will help students to survive outside the classroom, creative use of technologies like cloud computing will help them to change the world.

We at universities are not only engaged in research but also take a great responsibility shaping the next generations or even better, provide them with the tools to shape their own futures.

The Master Thesis project is an important stage in which students tackle a specific problem and do so using all available technologies and methodologies learned during their studies.

One of the best features of cloud computing is its high accessibility. In this way, it opens up a world of research possibilities and engenders a fast learning process, allowing the students to develop in a reasonable time projects like the ones that were outlined one year ago and those shown in the present article.

This time the effects of the financial crisis turned to be the center of gravity of this year’s Master Thesis projects, which are always proposed by the students themselves.

CygnusCloud (2012-2013, ongoing)

The three members of the CygnusCloud team (named in honor of the swam of Complutense University coat of arms) observed that many computational resources of the computer labs spread across the UCM campus were underutilized. On the other hand, computers from our faculty labs are often insufficient to meet the demand.


CygnusCloud Team: Adrian Fernandez, Samuel Guayerbas and Luis Barrios at one the UCM computer labs.

Turning each campus PC into a Computer Science lab computer would be one way to increase overall computing power, but in reality this isn’t a workable solution given the multitude of software requirements and subsequent administrative overhead this would create.

This project then aims to provide virtual lab machines that can be accessed from any available campus PC in which the both hardware and software requirements are minimal.

An on-demand and centralized distribution of these services like that proposed by CygnusCloud reduces the effects of budget cuts in education as students could use cheaper computers with less energy consumption. The proposed solution increases the academic progress as it optimizes the use of non-specialized computer labs and reduces costs as it relies totally on open source software.


Diagram showing CygnusCloud functionalities.

This academic year, our university reached an agreement with Google for outsourcing the e-mail services. Also, all campus members are provided with a Google Drive account. This will be exploited by CygnusCloud as it allows data ubiquity.

Moreover, the CygnusCloud team is one of the 85 participating at the Spanish Open-Source University Contest.

Next >> SmartCloud

SmartCloud (2012-2013, ongoing)

This project is focused on getting the most value out of existing infrastructure, as well as providing a service to UCM researchers or any member of an academic environment.


SmartCloud Team: César Cayo, Javier Bachrachas and Ailyn Baltá at the Monument to the Spanish Constitution at Madrid.

The main idea is to host virtual machines on computers in a LAN that aren’t currently in use. These machines don’t need to reside in a computer laboratory. Users from the administrative staff also qualify to be in the SmartCloud resource pool.

These machines could handle several guest types, which would serve as processing nodes inside a computing cluster or even separate machines for interactive access. One of the approaches is to rely on iPython for providing the researchers access to a powerful Matlab-style web notebook, which would be linked to their Google Drive accounts, sharing their data easily.


Diagram showing SmartCloud functionalities.

All technologies used in this project are open source and the outcome will represent a direct save for the adopting institution when it comes to licenses and hardware.

Both CygnusCloud and SmartCloud Master Thesis projects are co-advised by my colleague Dr. Jose Antonio Martin H., who is a Python expert and whose research interests are mainly Soft-Computing and Computational Intelligence. Indeed, this collaboration has increased the interdisciplinary nature and the quality of the solutions provided.

HORADRIM (2012-2013, ongoing)

Only one member comprises the team behind this project because he was my student at our Master in Bioinformatics and Computational Biology, which was rated as the best in its area for Spain last year.

This student is currently working at Sistemas Genómicos, an SME offering genetic analysis and bioinformatic services. He saw that this company had a limited computing environment due to the high demand of running applications. Unfortunately, this demand is not continuous and in the current economic situation scaling through the purchase of new equipment was not a valid option.


HORADRIM: Guillermo Marco at Sistemas Genómicos Datacenter

As cloud computing allows among other things the providing of resources on demand – pay only for what you use – he saw a great opportunity when his employer signed a partnership with T-Systems.


Diagram showing HORADRIM functionalities.

The first objective of the project is to implement a computing prototype that will expand the local cluster infrastructure into the cloud. The second objective is to calculate both economic and computational costs of certain bioinformatic applications in the cloud, in order to maximize the efficiency of the chosen cloud configuration.

Our best asset

Students are our best asset right now. The more we invest in them, the more we get in return. The next generation is aware of the harsh times we are currently living and they are willing “to lift a cloud.” We only have to give them an opportunity!

The three projects I have described are very representative because they affect three different areas affected by the financial crisis (teaching, research and SMEs). A feasible solution exists thanks to cloud computing and open source tools. If students can produce these ideas in just one academic year, what could they do over their academic careers and beyond!

If you are curious about past student projects, feel free to visit http://dsa-research.org/jlvazquez/students/.

About the Author

Dr. Jose Luis Vazquez-Poletti is Assistant Professor in Computer Architecture at Complutense University of Madrid (UCM, Spain), and a Cloud Computing Researcher at the Distributed Systems Architecture Research Group. He is (and has been) directly involved in EU funded projects, such as EGEE (grid computing) and 4CaaSt (PaaS Cloud), as well as many Spanish national initiatives.

From 2005 to 2009 his research focused in application porting onto grid computing infrastructures, activity that let him be “where the real action was.” These applications pertained to a wide range of areas, from fusion physics to bioinformatics. During this period he achieved the abilities needed for profiling applications and making them benefit of distributed computing infrastructures. Additionally, he shared these abilities in many training events organized within the EGEE Project and similar initiatives.

Since 2010 his research interests lie in different aspects of cloud computing, but always having real life applications in mind, especially those pertaining to the high Performance computing domain.

Website: http://dsa-research.org/jlvazquez/

Linkedin: http://www.linkedin.com/in/jlvazquezpoletti/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break “Speed Limit”

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Intel Ships Drives Based on 3-D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3-D XPoint non-volatile memory technology as it targets data-driven workloads. Read more…

By George Leopold

Researchers Recreate ‘El Reno’ Tornado on Blue Waters Supercomputer

March 16, 2017

The United States experiences more tornadoes than any other country. About 1,200 tornadoes touch down each each year in the U.S. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

AMD Expands Exascale Vision at IEEE HPC Symposium

March 7, 2017

With the race towards exascale heating up – for example, the Exascale Computing Program PathForward awards are expected soon – AMD delivered more details of its exascale vision at last month’s 23rd IEEE Symposium on High Performance Computer Architecture. The chipmaker presented an “Exascale Node Architecture (ENA) as the primary building block for exascale machine” including descriptions of component, interconnect, and packaging strategy along with simulation benchmarks to bolster its case. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This