Free Lectures: Cloud, Virtualization, MapReduce and More

By Tiffany Trader

January 7, 2013

Several lectures from the VSCSE Summer School on Science Clouds (July 30, 2012) are now available for viewing on YouTube. The presentations provide a clear and concise overview on the state of cloud and virtualization technologies with a particular focus on MapReduce.

These free, online lectures are part of the MOOC movement – referring to massive open online course. MOOCs are the product of an open education ethic that is characterized by the features of open access and scalability.

There are currently four “Cloud Computing MOOC” lectures are available for viewing. In the first one, Professor Geoffrey Fox introduces the Indiana University Cloud MOOC. In addition to laying out the agenda, Fox provides examples of the applications that are best-suited for clouds, most notably those that are “pleasingly parallel.” He highlights several science projects, for example FutureGrid, that are using cloud-based technologies, but also alludes to a lot of untapped potential.

Fox points to some interesting future possibilities. For example, it is projected that 24 billion devices will be connected to the Internet by 2020. This Internet of Things will rely on cloud for control and management functions. More and more, computing will look like a grid or mesh that touches nearly every aspect of our lives. The ability to offload computational tasks to the cloud will also enable advances in mobile computer devices and robotics.

Life science is another major vertical when it comes to cloud technology. Assistant Prof. Michael Schatz of the Simons Center for Quantitative Biology lectures on the use of cloud computing in genetic sequencing. Schatz is known for having produced some highly-sophisticated uses of MapReduce for biology applications. MapReduce was developed at Google for big data computations. It is a proprietary framework, but thanks to a 2004 paper, there are now open source implementations, most notably Hadoop.

Schatz notes that “Google every single day does the equivalent of a year’s worth of sequence analysis.” Traditional servers are no longer sufficient to handle such enormous data loads, but that’s where parallel computing technologies like MapReduce come in. Schatz gives an overview of the benefits and challenges of Hadoop and MapReduce before delving into specific implementations.

In the next video series, Professor J. Hacker argues that there is a growing need for virtualization in HPC. He explains the motivation for this conclusion is threefold: the clock speed increases following Moore’s law have ceased; hardware is going to multicore (example Intel MIC); and memory capacity of systems is increasing (512 GB on systems today). He notes that the traditional approach is to tie a single application to a single server. With 50-plus cores, this approach is no longer effective. Virtualization technology is being used to partition large scale servers to run many operating systems and VMs independent of each other.

The entire lecture is less than one hour long and provides an overview of virtualization and cloud technology in relation to HPC and then offers some practical advice for leveraging virtual HPC clusters. Hacker refers to cloud computing as the “distributed computing of this decade.” He views cloud as a computing utility that provides services over a network that “pushes functionality from devices at the edge (e.g. laptops and mobile phones) to centralized servers.”

In the last video series, Jonathan Klinginsmith, a PhD candidate at the School of Informatics and Computing at Indiana University, speaks about virtual clusters, MapReduce and the cloud. He covers such important questions as “Why is cloud interesting?” (hint: scalability, elasticity, utility computing).

While Klinginsmith’s main research interest is machine learning and artificial intelligence, he has turned to computer science and information systems to address the problem of growing data sets. He is not alone. Researchers from nearly scientific endeavor are finding it necessary to attain some degree of computational proficiency.

Klinginsmith aims his talk primarily at these non-computer scientists. Thus his presentation focuses mainly on running applications on top of clusters rather than getting too deep into the nuts and bolts of building and operating clusters. For anyone who is just getting started with Hadoop or MapReduce, this will be a valuable resource. In under an hour, the viewer should acquire a basic understanding of MapReduce, virtual machines, clusters, cloud and virtualization.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This