Berkeley Lab Contemplates Stepping Stone to Exascale Supercomputer

By Michael Feldman

January 8, 2013

The National Energy Research Scientific Computing Center (NERSC) at Berkeley Lab has recently begun installing Edison, the Cray supercomputer that will exceed two peak petaflops when its fully deployed in a couple of months. But the center is already prepping for its next-generation system, which is expected to be an order of magnitude more powerful. That supercomputer may be the center’s last big deployment prior to the exascale era.

That system, under the code name NERSC-8, is in its earliest stages. The RFI (Request For Information) for the system just went out in mid-December, with the RFP (Request For Proposal) is slated for the second quarter of 2013. If all goes as planned, NERSC-8 be awarded to some lucky vendor in the fourth quarter of the year, with system delivery expected to start before the end of 2015. System cost is expected to be in the range of $50 to $100 million

Since the last two big NERSC systems, Hopper (NERSC-6), an XE6 and now Edison (NERSC-7), an XC30, were both supplied by Cray, they would appear to be the odds on favorite to supply NERSC-8 as well. That’s not likely to prevent vendors like IBM and SGI from bidding on the system, especially since the RFP will actually specify two systems: the NERSC-8 one and “Trinity”, an NNSA supercomputer for Los Alamos National Laboratory (LANL) and Sandia National Laboratory (SNL). That system is also slated for deployment in 2015.

No doubt the DOE is looking to save some money by combining the procurement between the labs. It’s a little bit of an odd arrangement though, inasmuch as NERSC is under the DOE’s Office of Science, while Los Alamos and Sandia are part of the agency’s National Nuclear Security Administration division. But their supercomputer refresh cycles are apparently close enough together to make a dual-purpose RFP a reasonable bet.

Also, the computing requirement of these labs seem to align closely enough to use the same platform. Like NERSC’s Hopper, the top supercomputer at LANL/SNL, dubbed Cielo, is also a Cray XE6 — yet another reason to believe that Cray has the inside track on this procurement. Unlike the open science Hopper however, Cielo supports classified codes for the US nuclear stockpile stewardship program.

Since these supercomputers will be installed in the 2015/2016 timeframe and are intended to run for four to six years, they represent the pre-cursor to the exascale machines planned for the end of the decade. And although NERSC-8 and Trinity are likely to be in the sub-100-petaflop range, they are the architectural stepping stones to those exaflop or near-exaflop machines five years further down the road.

The draft of the technical requirements for the NERSC-8/Trinity platform doesn’t specify peak (or Linpack) FLOPS. Performance requirements are described in terms of mini-application benchmarks provided by NERSC and, for Trinity, an ASC (Advanced Simulation and Computing) code suite.

The NERSC mini-apps are a set of codes that support a variety of science applications that aligns with the DOE’s mission, especially physics codes of various stripes, and climate modeling and analysis. With the mini-apps as the benchmark, the goal for NERSC-8 is to deliver a system that performs 10 to 30 times faster than Hopper. For Trinity, performance is expected to be 20 to 60 times faster.

An order of magnitude performance increase in three years is certainly doable in the fast-paced world of supercomputing. The biggest challenge, especially for NERSC, will be to provide a system that can bring along the 600 or so science applications that are currently running on the Berkeley hardware. Spread across around 5,000 users (the largest user base of any DOE center), these applications represent a considerable manpower investment in software.

This explains NERSC’s conservative approach of supercomputing architectures to date. Hopper, and now Edison, are CPU-only machines, so moving the code base between them will be relatively easy. According the Kathy Yelick, Associate Laboratory Director of Computing Sciences at NERSC, attending to the needs of hundreds of applications and thousands of users requires a different approach than centers with a more specialized user base. “There are things you can do if you’ve got 6 applications that you can not do if you’ve got 600,” she told HPCwire.

The problem is that the shortest and cheapest path to double-digit petaflops today involves add-on accelerators like GPUs and now Intel’s Xeon Phi coprocessors. But because these devices are remote from the CPU (connected via PCIe, without direct access to main memory), a significant amount of software work can be required to get codes to take advantage of the extra FLOPS. That’s why, with 600 applications in tow, NERSC has shied away from such systems.

Although NERSC is one of the largest labs for the DOE, its top system, Hopper, sits at number 19 on the TOP500, although when Edison come online it may briefly penetrate the top 10. Prestige aside, that’s resulted in a capacity gap for NERSC’s numerous users. According to Yelick, even with Edison their demand will be an order of magnitude greater than what they can provide. Ideally, she says, they would like to have a 10-petaflop system up and running today.

They could have built such a machine, but it would have required either discrete accelerators (a programming model they would rather skip) or something more proprietary like the Blue Gene platform (an architecture they have avoided). The hope is that by 2015, they will be able to get something on the exascale roadmap, but with a programming model that is reasonably friendly to CPU-based codes.

That most likely means integrated heterogeneous processors like NVIDIA’s “Project Denver” ARM-GPUs, AMD’s x86-GPU APUs, or whatever Intel brings to the table with integrated Xeon Phi coprocessing. Although more complex than a pure CPU solution from a software point of view, the integrated designs at least avoid the messy PCIe communication and the completely separate memory space of the accelerator device.

According to Yelick, they’re trying to take the middle path here. Her thinking is that if you switch programming models too early, the developers can get caught in an architectural cul-de-sac that will be replaced in a few years with something more general-purpose. But if you switch too late, your center and applications can become irrelevant. “It’s a complicated time to make these decisions,” says Yelick.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Tuning InfiniBand Interconnects Using Congestion Control

July 26, 2017

InfiniBand is among the most common and well-known cluster interconnect technologies. However, the complexities of an InfiniBand (IB) network can frustrate the most experienced cluster administrators. Maintaining a balan Read more…

By Adam Dorsey

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a community infrastructure in support of machine learning research Read more…

By John Russell

DARPA Continues Investment in Post-Moore’s Technologies

July 24, 2017

The U.S. military long ago ceded dominance in electronics innovation to Silicon Valley, the DoD-backed powerhouse that has driven microelectronic generation for decades. With Moore's Law clearly running out of steam, the Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Tuning InfiniBand Interconnects Using Congestion Control

July 26, 2017

InfiniBand is among the most common and well-known cluster interconnect technologies. However, the complexities of an InfiniBand (IB) network can frustrate the Read more…

By Adam Dorsey

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This