Berkeley Lab Contemplates Stepping Stone to Exascale Supercomputer

By Michael Feldman

January 8, 2013

The National Energy Research Scientific Computing Center (NERSC) at Berkeley Lab has recently begun installing Edison, the Cray supercomputer that will exceed two peak petaflops when its fully deployed in a couple of months. But the center is already prepping for its next-generation system, which is expected to be an order of magnitude more powerful. That supercomputer may be the center’s last big deployment prior to the exascale era.

That system, under the code name NERSC-8, is in its earliest stages. The RFI (Request For Information) for the system just went out in mid-December, with the RFP (Request For Proposal) is slated for the second quarter of 2013. If all goes as planned, NERSC-8 be awarded to some lucky vendor in the fourth quarter of the year, with system delivery expected to start before the end of 2015. System cost is expected to be in the range of $50 to $100 million

Since the last two big NERSC systems, Hopper (NERSC-6), an XE6 and now Edison (NERSC-7), an XC30, were both supplied by Cray, they would appear to be the odds on favorite to supply NERSC-8 as well. That’s not likely to prevent vendors like IBM and SGI from bidding on the system, especially since the RFP will actually specify two systems: the NERSC-8 one and “Trinity”, an NNSA supercomputer for Los Alamos National Laboratory (LANL) and Sandia National Laboratory (SNL). That system is also slated for deployment in 2015.

No doubt the DOE is looking to save some money by combining the procurement between the labs. It’s a little bit of an odd arrangement though, inasmuch as NERSC is under the DOE’s Office of Science, while Los Alamos and Sandia are part of the agency’s National Nuclear Security Administration division. But their supercomputer refresh cycles are apparently close enough together to make a dual-purpose RFP a reasonable bet.

Also, the computing requirement of these labs seem to align closely enough to use the same platform. Like NERSC’s Hopper, the top supercomputer at LANL/SNL, dubbed Cielo, is also a Cray XE6 — yet another reason to believe that Cray has the inside track on this procurement. Unlike the open science Hopper however, Cielo supports classified codes for the US nuclear stockpile stewardship program.

Since these supercomputers will be installed in the 2015/2016 timeframe and are intended to run for four to six years, they represent the pre-cursor to the exascale machines planned for the end of the decade. And although NERSC-8 and Trinity are likely to be in the sub-100-petaflop range, they are the architectural stepping stones to those exaflop or near-exaflop machines five years further down the road.

The draft of the technical requirements for the NERSC-8/Trinity platform doesn’t specify peak (or Linpack) FLOPS. Performance requirements are described in terms of mini-application benchmarks provided by NERSC and, for Trinity, an ASC (Advanced Simulation and Computing) code suite.

The NERSC mini-apps are a set of codes that support a variety of science applications that aligns with the DOE’s mission, especially physics codes of various stripes, and climate modeling and analysis. With the mini-apps as the benchmark, the goal for NERSC-8 is to deliver a system that performs 10 to 30 times faster than Hopper. For Trinity, performance is expected to be 20 to 60 times faster.

An order of magnitude performance increase in three years is certainly doable in the fast-paced world of supercomputing. The biggest challenge, especially for NERSC, will be to provide a system that can bring along the 600 or so science applications that are currently running on the Berkeley hardware. Spread across around 5,000 users (the largest user base of any DOE center), these applications represent a considerable manpower investment in software.

This explains NERSC’s conservative approach of supercomputing architectures to date. Hopper, and now Edison, are CPU-only machines, so moving the code base between them will be relatively easy. According the Kathy Yelick, Associate Laboratory Director of Computing Sciences at NERSC, attending to the needs of hundreds of applications and thousands of users requires a different approach than centers with a more specialized user base. “There are things you can do if you’ve got 6 applications that you can not do if you’ve got 600,” she told HPCwire.

The problem is that the shortest and cheapest path to double-digit petaflops today involves add-on accelerators like GPUs and now Intel’s Xeon Phi coprocessors. But because these devices are remote from the CPU (connected via PCIe, without direct access to main memory), a significant amount of software work can be required to get codes to take advantage of the extra FLOPS. That’s why, with 600 applications in tow, NERSC has shied away from such systems.

Although NERSC is one of the largest labs for the DOE, its top system, Hopper, sits at number 19 on the TOP500, although when Edison come online it may briefly penetrate the top 10. Prestige aside, that’s resulted in a capacity gap for NERSC’s numerous users. According to Yelick, even with Edison their demand will be an order of magnitude greater than what they can provide. Ideally, she says, they would like to have a 10-petaflop system up and running today.

They could have built such a machine, but it would have required either discrete accelerators (a programming model they would rather skip) or something more proprietary like the Blue Gene platform (an architecture they have avoided). The hope is that by 2015, they will be able to get something on the exascale roadmap, but with a programming model that is reasonably friendly to CPU-based codes.

That most likely means integrated heterogeneous processors like NVIDIA’s “Project Denver” ARM-GPUs, AMD’s x86-GPU APUs, or whatever Intel brings to the table with integrated Xeon Phi coprocessing. Although more complex than a pure CPU solution from a software point of view, the integrated designs at least avoid the messy PCIe communication and the completely separate memory space of the accelerator device.

According to Yelick, they’re trying to take the middle path here. Her thinking is that if you switch programming models too early, the developers can get caught in an architectural cul-de-sac that will be replaced in a few years with something more general-purpose. But if you switch too late, your center and applications can become irrelevant. “It’s a complicated time to make these decisions,” says Yelick.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Shares Recipe to Accelerate AI Cloud Adoption

May 29, 2017

In March, Nvidia revealed blueprints for a new open source Tesla GPU-based accelerator – HGX-1 – developed for clouds with Microsoft under its Project Olym Read more…

By Tiffany Trader

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Nvidia Shares Recipe to Accelerate AI Cloud Adoption

May 29, 2017

In March, Nvidia revealed blueprints for a new open source Tesla GPU-based accelerator – HGX-1 – developed for clouds with Microsoft under its Project Olym Read more…

By Tiffany Trader

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This