Berkeley Lab Contemplates Stepping Stone to Exascale Supercomputer

By Michael Feldman

January 8, 2013

The National Energy Research Scientific Computing Center (NERSC) at Berkeley Lab has recently begun installing Edison, the Cray supercomputer that will exceed two peak petaflops when its fully deployed in a couple of months. But the center is already prepping for its next-generation system, which is expected to be an order of magnitude more powerful. That supercomputer may be the center’s last big deployment prior to the exascale era.

That system, under the code name NERSC-8, is in its earliest stages. The RFI (Request For Information) for the system just went out in mid-December, with the RFP (Request For Proposal) is slated for the second quarter of 2013. If all goes as planned, NERSC-8 be awarded to some lucky vendor in the fourth quarter of the year, with system delivery expected to start before the end of 2015. System cost is expected to be in the range of $50 to $100 million

Since the last two big NERSC systems, Hopper (NERSC-6), an XE6 and now Edison (NERSC-7), an XC30, were both supplied by Cray, they would appear to be the odds on favorite to supply NERSC-8 as well. That’s not likely to prevent vendors like IBM and SGI from bidding on the system, especially since the RFP will actually specify two systems: the NERSC-8 one and “Trinity”, an NNSA supercomputer for Los Alamos National Laboratory (LANL) and Sandia National Laboratory (SNL). That system is also slated for deployment in 2015.

No doubt the DOE is looking to save some money by combining the procurement between the labs. It’s a little bit of an odd arrangement though, inasmuch as NERSC is under the DOE’s Office of Science, while Los Alamos and Sandia are part of the agency’s National Nuclear Security Administration division. But their supercomputer refresh cycles are apparently close enough together to make a dual-purpose RFP a reasonable bet.

Also, the computing requirement of these labs seem to align closely enough to use the same platform. Like NERSC’s Hopper, the top supercomputer at LANL/SNL, dubbed Cielo, is also a Cray XE6 — yet another reason to believe that Cray has the inside track on this procurement. Unlike the open science Hopper however, Cielo supports classified codes for the US nuclear stockpile stewardship program.

Since these supercomputers will be installed in the 2015/2016 timeframe and are intended to run for four to six years, they represent the pre-cursor to the exascale machines planned for the end of the decade. And although NERSC-8 and Trinity are likely to be in the sub-100-petaflop range, they are the architectural stepping stones to those exaflop or near-exaflop machines five years further down the road.

The draft of the technical requirements for the NERSC-8/Trinity platform doesn’t specify peak (or Linpack) FLOPS. Performance requirements are described in terms of mini-application benchmarks provided by NERSC and, for Trinity, an ASC (Advanced Simulation and Computing) code suite.

The NERSC mini-apps are a set of codes that support a variety of science applications that aligns with the DOE’s mission, especially physics codes of various stripes, and climate modeling and analysis. With the mini-apps as the benchmark, the goal for NERSC-8 is to deliver a system that performs 10 to 30 times faster than Hopper. For Trinity, performance is expected to be 20 to 60 times faster.

An order of magnitude performance increase in three years is certainly doable in the fast-paced world of supercomputing. The biggest challenge, especially for NERSC, will be to provide a system that can bring along the 600 or so science applications that are currently running on the Berkeley hardware. Spread across around 5,000 users (the largest user base of any DOE center), these applications represent a considerable manpower investment in software.

This explains NERSC’s conservative approach of supercomputing architectures to date. Hopper, and now Edison, are CPU-only machines, so moving the code base between them will be relatively easy. According the Kathy Yelick, Associate Laboratory Director of Computing Sciences at NERSC, attending to the needs of hundreds of applications and thousands of users requires a different approach than centers with a more specialized user base. “There are things you can do if you’ve got 6 applications that you can not do if you’ve got 600,” she told HPCwire.

The problem is that the shortest and cheapest path to double-digit petaflops today involves add-on accelerators like GPUs and now Intel’s Xeon Phi coprocessors. But because these devices are remote from the CPU (connected via PCIe, without direct access to main memory), a significant amount of software work can be required to get codes to take advantage of the extra FLOPS. That’s why, with 600 applications in tow, NERSC has shied away from such systems.

Although NERSC is one of the largest labs for the DOE, its top system, Hopper, sits at number 19 on the TOP500, although when Edison come online it may briefly penetrate the top 10. Prestige aside, that’s resulted in a capacity gap for NERSC’s numerous users. According to Yelick, even with Edison their demand will be an order of magnitude greater than what they can provide. Ideally, she says, they would like to have a 10-petaflop system up and running today.

They could have built such a machine, but it would have required either discrete accelerators (a programming model they would rather skip) or something more proprietary like the Blue Gene platform (an architecture they have avoided). The hope is that by 2015, they will be able to get something on the exascale roadmap, but with a programming model that is reasonably friendly to CPU-based codes.

That most likely means integrated heterogeneous processors like NVIDIA’s “Project Denver” ARM-GPUs, AMD’s x86-GPU APUs, or whatever Intel brings to the table with integrated Xeon Phi coprocessing. Although more complex than a pure CPU solution from a software point of view, the integrated designs at least avoid the messy PCIe communication and the completely separate memory space of the accelerator device.

According to Yelick, they’re trying to take the middle path here. Her thinking is that if you switch programming models too early, the developers can get caught in an architectural cul-de-sac that will be replaced in a few years with something more general-purpose. But if you switch too late, your center and applications can become irrelevant. “It’s a complicated time to make these decisions,” says Yelick.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This