Berkeley Lab Contemplates Stepping Stone to Exascale Supercomputer

By Michael Feldman

January 8, 2013

The National Energy Research Scientific Computing Center (NERSC) at Berkeley Lab has recently begun installing Edison, the Cray supercomputer that will exceed two peak petaflops when its fully deployed in a couple of months. But the center is already prepping for its next-generation system, which is expected to be an order of magnitude more powerful. That supercomputer may be the center’s last big deployment prior to the exascale era.

That system, under the code name NERSC-8, is in its earliest stages. The RFI (Request For Information) for the system just went out in mid-December, with the RFP (Request For Proposal) is slated for the second quarter of 2013. If all goes as planned, NERSC-8 be awarded to some lucky vendor in the fourth quarter of the year, with system delivery expected to start before the end of 2015. System cost is expected to be in the range of $50 to $100 million

Since the last two big NERSC systems, Hopper (NERSC-6), an XE6 and now Edison (NERSC-7), an XC30, were both supplied by Cray, they would appear to be the odds on favorite to supply NERSC-8 as well. That’s not likely to prevent vendors like IBM and SGI from bidding on the system, especially since the RFP will actually specify two systems: the NERSC-8 one and “Trinity”, an NNSA supercomputer for Los Alamos National Laboratory (LANL) and Sandia National Laboratory (SNL). That system is also slated for deployment in 2015.

No doubt the DOE is looking to save some money by combining the procurement between the labs. It’s a little bit of an odd arrangement though, inasmuch as NERSC is under the DOE’s Office of Science, while Los Alamos and Sandia are part of the agency’s National Nuclear Security Administration division. But their supercomputer refresh cycles are apparently close enough together to make a dual-purpose RFP a reasonable bet.

Also, the computing requirement of these labs seem to align closely enough to use the same platform. Like NERSC’s Hopper, the top supercomputer at LANL/SNL, dubbed Cielo, is also a Cray XE6 — yet another reason to believe that Cray has the inside track on this procurement. Unlike the open science Hopper however, Cielo supports classified codes for the US nuclear stockpile stewardship program.

Since these supercomputers will be installed in the 2015/2016 timeframe and are intended to run for four to six years, they represent the pre-cursor to the exascale machines planned for the end of the decade. And although NERSC-8 and Trinity are likely to be in the sub-100-petaflop range, they are the architectural stepping stones to those exaflop or near-exaflop machines five years further down the road.

The draft of the technical requirements for the NERSC-8/Trinity platform doesn’t specify peak (or Linpack) FLOPS. Performance requirements are described in terms of mini-application benchmarks provided by NERSC and, for Trinity, an ASC (Advanced Simulation and Computing) code suite.

The NERSC mini-apps are a set of codes that support a variety of science applications that aligns with the DOE’s mission, especially physics codes of various stripes, and climate modeling and analysis. With the mini-apps as the benchmark, the goal for NERSC-8 is to deliver a system that performs 10 to 30 times faster than Hopper. For Trinity, performance is expected to be 20 to 60 times faster.

An order of magnitude performance increase in three years is certainly doable in the fast-paced world of supercomputing. The biggest challenge, especially for NERSC, will be to provide a system that can bring along the 600 or so science applications that are currently running on the Berkeley hardware. Spread across around 5,000 users (the largest user base of any DOE center), these applications represent a considerable manpower investment in software.

This explains NERSC’s conservative approach of supercomputing architectures to date. Hopper, and now Edison, are CPU-only machines, so moving the code base between them will be relatively easy. According the Kathy Yelick, Associate Laboratory Director of Computing Sciences at NERSC, attending to the needs of hundreds of applications and thousands of users requires a different approach than centers with a more specialized user base. “There are things you can do if you’ve got 6 applications that you can not do if you’ve got 600,” she told HPCwire.

The problem is that the shortest and cheapest path to double-digit petaflops today involves add-on accelerators like GPUs and now Intel’s Xeon Phi coprocessors. But because these devices are remote from the CPU (connected via PCIe, without direct access to main memory), a significant amount of software work can be required to get codes to take advantage of the extra FLOPS. That’s why, with 600 applications in tow, NERSC has shied away from such systems.

Although NERSC is one of the largest labs for the DOE, its top system, Hopper, sits at number 19 on the TOP500, although when Edison come online it may briefly penetrate the top 10. Prestige aside, that’s resulted in a capacity gap for NERSC’s numerous users. According to Yelick, even with Edison their demand will be an order of magnitude greater than what they can provide. Ideally, she says, they would like to have a 10-petaflop system up and running today.

They could have built such a machine, but it would have required either discrete accelerators (a programming model they would rather skip) or something more proprietary like the Blue Gene platform (an architecture they have avoided). The hope is that by 2015, they will be able to get something on the exascale roadmap, but with a programming model that is reasonably friendly to CPU-based codes.

That most likely means integrated heterogeneous processors like NVIDIA’s “Project Denver” ARM-GPUs, AMD’s x86-GPU APUs, or whatever Intel brings to the table with integrated Xeon Phi coprocessing. Although more complex than a pure CPU solution from a software point of view, the integrated designs at least avoid the messy PCIe communication and the completely separate memory space of the accelerator device.

According to Yelick, they’re trying to take the middle path here. Her thinking is that if you switch programming models too early, the developers can get caught in an architectural cul-de-sac that will be replaced in a few years with something more general-purpose. But if you switch too late, your center and applications can become irrelevant. “It’s a complicated time to make these decisions,” says Yelick.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effects in new materials to supporting bioinformatics for advanced healthcare research to screening millions of possible chemical combinations to attack a deadly virus. Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This