A One-of-a-Kind Supercomputer to Map the Cosmos

By Michael Feldman

January 9, 2013

A new petascale supercomputer built to study the universe is one of the fastest calculating machines in the world, and certainly the fastest of its kind. The supercomputer is part of ALMA, a new radio telescope that is claimed to be “largest ground-based astronomical project in existence.”

ALMA, which stands for Atacama Large Millimeter/submillimeter Array, is an international project, which includes partners from Europe (European Southern Observatory, Laboratoire d’Astrophysique de Bordeaux), North America (National Radio Astronomy Observatory), and Japan (National Astronomical Observatory of Japan). The Joint ALMA Observatory, based in Santiago Chile, manages the project.

The ALMA radio telescope is a collection of 66 high-precision antennas (parabolic dishes that act as receivers), strewn over the 5,000 meter-high Chajnantor desert plateau in northern Chile. The dry air and elevation makes it a particularly suitable spot for capturing signals from space in the millimeter and sub-millimeter radio spectrum. At those wavelengths, the antennas can detect the so-called “cool Universe,” molecular gas and dust as well as residual radiation from the Big Bang.

The antennas can be set to capture signals in a variety of configurations, such that the distance between them can vary between 150 meters to 16 kilometers. That gives the ALMA telescope something akin to a “zoom” capability, as well as very high sensitivity and resolution. As a result, it should be able to produce images 10 times sharper than that of the Hubble Space Telescope.

The challenge of multiple radio antennas is to make them behave as a single receiver, and for that you need some hefty number crunching — thus the need for a supercomputer. The one built for ALMA is actually a special-purpose device designed to correlate faint signals from multiple sources. Because of its function, the supercomputer is actually known as “the correlator.” The supercomputer jargon was added later by the public relation guys to bring attention to its exceptional calculating prowess.

And exceptional it is. The correlator deliver 17 quadrillion operations per second. That’s 17 petaOPS (not petaFLOPS). If you discount these are not floating point operations, the system operates at a level comparable to Titan, the fastest general-purpose supercomputer in the world, and the current title-holder on the TOP500.

The ALMA system, which was built by the National Radio Astronomy Observatory (NRAO), uses 32,767 custom ASIC processors to blend the signals from the antenna array. The processors, built on 0.25 micron CMOS technology, run at a modest 125 MHz, with each one drawing just 1.8 watts. But because it is purpose-built for these correlation functions, the silicon is able to deliver 512 billion operations per second (gigaOPS). The processors are arranged 64 to a board, which are connected via a 1 megabit/second Controller Area Network.

There are also 17 ancillary computers involved in acquiring and calibrating data from the correlator hardware. The correlator itself is designed to receive 96 gigabits per second from up to 64 antennas and can sustain an output rate of 1 gigabyte per second.

The supercomputer is not all hard-wired though. According to Rich Lacasse, leader of the ALMA Correlator Team at NRAO, and Joe Greenberg, who worked on the hardware, there are several layers of software. For example, the processor supports about 70 flavors of correlation functions each with programmable features. So coding is required to configure these modes as well as monitor for correct operation. There is also high-level software for configuring the processors.

The proprietary architecture of the correlator was used to overcome cost and power usage constraints of the ALMA project. John Webber, former head of the NRAO Central Development Laboratory, says despite the custom design, their system was built for just $11 million, adding that a comparable general-purpose computer would have cost about $1 billion. Actually a GPU-accelerated supercomputer is quite a bit less expensive these days. Titan, for example, was built for $100 million. Nevertheless, that’s still nearly 10 times the cost of the ALMA machine.

Energy efficiency is even more impressive. Thanks to the low-power processors, the correlator consumes just 140 kilowatts of power. (The general-purpose Titan draws 8 megawatts.) But despite the correlator’s modest power usage, it takes twice the normal airflow to cool it due to the rarified atmosphere at 5,000 meters (16,500 feet). Also, hard drives operate problematically in the thin air, so the correlator is diskless.

ALMA began collecting data in 2011 with a partial array of radio antennas, with a cut-down version of the correlator being used to combine the signals from the initial array. Today, though, the entire array is operational and the correlator is ready for begin slicing and dicing signals from a larger number of antennas. That will increase its sensitivity and resulting image quality. The project is slated to be completely operational in March 2013.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This