HPC Programming in the Age of Multicore: One Man’s View

By Michael Feldman

January 14, 2013

Application developers looking for a foundational treatment of HPC programming need look no further than the 2010 text, Introduction to High Performance Computing for Scientists and Engineers, which describes the art of extracting maximum performance from modern processors and HPC platforms. Gerhard Wellein, who co-authored the book with colleague Georg Hager, has made a career of teaching HPC techniques to aspiring students in science and engineering programs.

Currently a professor at the Department for Computer Science at the University of Erlangen-Nuremberg, Wellein also heads the HPC group at the Erlangen Regional Computing Center (RRZE). Like many in HPC today, he came from a science background, in this case physics, and specifically solid state physics. Wellein holds a PhD in the subject from Germany’s University of Bayreuth, and his interest in parallel and HPC programming stem from the intense computation demands of his original field of study.

At this June’s International Supercomputing Conference (ISC’13) in Leipzig, Germany, Wellein will be delivering a keynote titled, Fooling the Masses with Performance Results: Old Classics & Some New Ideas. The presentation was inspired by David H. Bailey 1991 classic article Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers, and is intended to follow the humorous tone of Bailey’s original work.

HPCwire caught up with Wellein and asked him to preview some of the themes of his upcoming talk and expound on strategies for performance programming in the multicore era.

HPCwire: Multicore processors have been with us for more than a decade. In general, do you think programmers and programming has caught up to this computing paradigm?

Gerhard Wellein: Many software developers mainly focus on extendibility, flexibility and maintainability for their frameworks. Performance or better time to solution has not been an issue for them for two decades. Teaching in computer science still often ignores performance issues.

The same holds for parallelization – here the developers often hope that some other software layer – compiler or libraries – will do the job. However, people should become aware that improving time to solution, through hardware efficient code structures and parallelization, is not for free and often orthogonal to widely accepted concepts in modern programming languages and software engineering paradigms.

In a very provocative statement I would say that “abstraction is the natural enemy of performance.” To mitigate this problem, software developers need to understand the interaction of the different software layers, including compilers, with the basic hardware structures at least at a coarse level, and consider this relationship when designing and implementing the performance-critical path of the software.

HPCwire: In general, why is it so hard to extract peak performance from multicore processors?

Wellein: Modern multicore processors draw their performance from thread-level parallelism and data parallelism, that is, multiple cores and wide SIMD units per core. The programmer has to address both hardware features at the same time and needs optimize for them; otherwise he loses a substantial fraction of peak performance. If the compiler, for some reason, refuses to vectorize your single precision arithmetic code, you immediately lose almost 90 percent of the available peak performance on the latest Intel processors!

Then you need to do the job on your own. But who uses SIMD intrinsics or even programs assembly language? The same holds for multicore parallelization. Here load imbalances or dependencies can severely limit multicore efficiency from the start.

Moreover multicores have plenty of shared resources such as caches and memory interfaces which carry the risk of contention. One also should be aware that the maximum attainable performance always depends on the problem to be solved. Sparse matrix solvers working on irregular problems typically can only achieve a single digit fraction of peak performance, due to main memory bandwidth limitations. The architecture of modern multicores strongly favors problems which run from cache and have high spatial and temporal locality in their data access, which excludes large application areas from getting close to peak performance.
HPCwire: What kinds of tools and techniques for multicore programming are available that are not being commonly employed now?

Wellein: There is no lack of advanced tools. Often I have the impression that there are too many tools, frameworks and parallel programming models out there and many software developers get lost.

What is missing is a comprehensive understanding of the attainable performance for a give code or algorithm on a given hardware platform. Performance modeling is a structured process to analyze the interaction of hardware and software in order to predict the best performance levels both in serial and parallel applications. Comparing actual and predicted performance identifies inefficient code parts and opportunities for code optimization. Thus I feel that for time-critical applications, performance modeling should be integral part of the software development cycle.

HPCwire: If you had to pick one or two attributes of modern processors that hinders the ability of HPC developers to extract performance, what would it be?

Wellein: Performance improvements in multicores are driven mainly by two factors – SIMD and multicore parallelism – which need to be explicitly addressed by the programmer. The compiler alone will not do the job! In the good old days of the clock speed race, performance was boosted by the increasing processor frequency for free.

HPCwire: Is programming for performance different that programming for energy efficiency?

Wellein: No, this is just another side of the same medal. Programming for performance aims to reduce overall runtime. It may increase the power consumption mainly of the processor chip. But what counts at the end of the day is energy to solution, which is the product of both. All optimizations which substantially improve time to solution also reduce overall energy consumption.

What is even more interesting is that with a well optimized serial code you need fewer cores to saturate performance on the multicore chip. This now offers the interesting option to substantially reduce the clock speed of multicores or switch off cores completely! Some people may still complain that this makes your code less scalable on multicores. That is true but it improves energy efficiency and time to solution.

HPCwire: What do you think of the latest vector accelerators: GPUs and Intel’s latest Xeon Phi line, or even the general-purpose DSPs from Texas Instruments? Is this a reasonable approach for vector computing or do you see this as an intermediate step to something else?

Wellein: Those approaches trade in hardware complexity for additional performance, thus shifting additional work load to the programmer. Application performance on those architectures is typically much more susceptible to programmer’s capability to write highly efficient code. At the “core” level they draw their performance from the same concepts as vector computers did, namely fine-grained data parallelism with a wide SIMD approach. The product of those two factors on an Intel Xeon Phi processor makes performance approximately 15 times higher than on a state-of-the art Xeon EP processor, making the accelerator even more sensitive to inefficient codes.

From classical vector computers they differ in the sense that accelerators are mainly optimized for FLOPS and not for FLOPS-to-byte ratios. This also becomes evident if you look at the hierarchical memory subsystems which do not provide the ease of use of the simple flat designs of vector computers.

Increasing fine-grained data parallelism in hardware may further boost the FLOPS of future accelerators, but will further decrease the FLOPS-to-byte ratios. Also non-SIMD parts in the codes may soon become severe bottlenecks – with greetings from Gene Amdahl!
HPCwire: Does the mass market for processors – generic servers, PCs, and now especially mobile devices – serve the needs of HPC? Do you think there is a reasonable cost/benefit for developing more specialized processors for this domain?

Wellein: The rapid development cycles and cost reductions of the mass markets have substantially fostered progress in computational science and engineering in the past decade. These achievements opened HPC capacities for the “masses” in science and engineering.

I do not feel that most of those users are today willing to pay a high price premium to develop specialized hardware solutions, which means for them to trade in capability for capacity. What is happening to the last vendor of specialized processors for supercomputing – NEC with its vector computing processors – is a good example. In recent years NEC lost many of their customers in the weather and climate community, one of the few communities that asked for specialized HPC solutions for a long time. The Lattice QCD community is still building specialized solutions, such as the QPACE project, but also gave up designing its own processors.

The requirements to an “optimal processor” differ substantially among the application communities and making specialized designs for each of them is economically unattractive for most of the users. They take what they get from the mass market vendors. As long as those deliver processors which provide a good compromise between “time to solution,” aka capability, and “throughput,” aka capacity, for most users, there is not enough pressure for large-scale investments in specialized HPC processors.

I do not feel comfortable with that trend because there is tendency to blame the application that it cannot make efficient use of those processors and one should adapt the solver or even the physical model to the processor! A provocative summary of this trend: “Seymour Cray built machines to solve problems. Today we look for problems which we can solve on the machines available!”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This