HPC Programming in the Age of Multicore: One Man’s View

By Michael Feldman

January 14, 2013

Application developers looking for a foundational treatment of HPC programming need look no further than the 2010 text, Introduction to High Performance Computing for Scientists and Engineers, which describes the art of extracting maximum performance from modern processors and HPC platforms. Gerhard Wellein, who co-authored the book with colleague Georg Hager, has made a career of teaching HPC techniques to aspiring students in science and engineering programs.

Currently a professor at the Department for Computer Science at the University of Erlangen-Nuremberg, Wellein also heads the HPC group at the Erlangen Regional Computing Center (RRZE). Like many in HPC today, he came from a science background, in this case physics, and specifically solid state physics. Wellein holds a PhD in the subject from Germany’s University of Bayreuth, and his interest in parallel and HPC programming stem from the intense computation demands of his original field of study.

At this June’s International Supercomputing Conference (ISC’13) in Leipzig, Germany, Wellein will be delivering a keynote titled, Fooling the Masses with Performance Results: Old Classics & Some New Ideas. The presentation was inspired by David H. Bailey 1991 classic article Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers, and is intended to follow the humorous tone of Bailey’s original work.

HPCwire caught up with Wellein and asked him to preview some of the themes of his upcoming talk and expound on strategies for performance programming in the multicore era.

HPCwire: Multicore processors have been with us for more than a decade. In general, do you think programmers and programming has caught up to this computing paradigm?

Gerhard Wellein: Many software developers mainly focus on extendibility, flexibility and maintainability for their frameworks. Performance or better time to solution has not been an issue for them for two decades. Teaching in computer science still often ignores performance issues.

The same holds for parallelization – here the developers often hope that some other software layer – compiler or libraries – will do the job. However, people should become aware that improving time to solution, through hardware efficient code structures and parallelization, is not for free and often orthogonal to widely accepted concepts in modern programming languages and software engineering paradigms.

In a very provocative statement I would say that “abstraction is the natural enemy of performance.” To mitigate this problem, software developers need to understand the interaction of the different software layers, including compilers, with the basic hardware structures at least at a coarse level, and consider this relationship when designing and implementing the performance-critical path of the software.

HPCwire: In general, why is it so hard to extract peak performance from multicore processors?

Wellein: Modern multicore processors draw their performance from thread-level parallelism and data parallelism, that is, multiple cores and wide SIMD units per core. The programmer has to address both hardware features at the same time and needs optimize for them; otherwise he loses a substantial fraction of peak performance. If the compiler, for some reason, refuses to vectorize your single precision arithmetic code, you immediately lose almost 90 percent of the available peak performance on the latest Intel processors!

Then you need to do the job on your own. But who uses SIMD intrinsics or even programs assembly language? The same holds for multicore parallelization. Here load imbalances or dependencies can severely limit multicore efficiency from the start.

Moreover multicores have plenty of shared resources such as caches and memory interfaces which carry the risk of contention. One also should be aware that the maximum attainable performance always depends on the problem to be solved. Sparse matrix solvers working on irregular problems typically can only achieve a single digit fraction of peak performance, due to main memory bandwidth limitations. The architecture of modern multicores strongly favors problems which run from cache and have high spatial and temporal locality in their data access, which excludes large application areas from getting close to peak performance.
HPCwire: What kinds of tools and techniques for multicore programming are available that are not being commonly employed now?

Wellein: There is no lack of advanced tools. Often I have the impression that there are too many tools, frameworks and parallel programming models out there and many software developers get lost.

What is missing is a comprehensive understanding of the attainable performance for a give code or algorithm on a given hardware platform. Performance modeling is a structured process to analyze the interaction of hardware and software in order to predict the best performance levels both in serial and parallel applications. Comparing actual and predicted performance identifies inefficient code parts and opportunities for code optimization. Thus I feel that for time-critical applications, performance modeling should be integral part of the software development cycle.

HPCwire: If you had to pick one or two attributes of modern processors that hinders the ability of HPC developers to extract performance, what would it be?

Wellein: Performance improvements in multicores are driven mainly by two factors – SIMD and multicore parallelism – which need to be explicitly addressed by the programmer. The compiler alone will not do the job! In the good old days of the clock speed race, performance was boosted by the increasing processor frequency for free.

HPCwire: Is programming for performance different that programming for energy efficiency?

Wellein: No, this is just another side of the same medal. Programming for performance aims to reduce overall runtime. It may increase the power consumption mainly of the processor chip. But what counts at the end of the day is energy to solution, which is the product of both. All optimizations which substantially improve time to solution also reduce overall energy consumption.

What is even more interesting is that with a well optimized serial code you need fewer cores to saturate performance on the multicore chip. This now offers the interesting option to substantially reduce the clock speed of multicores or switch off cores completely! Some people may still complain that this makes your code less scalable on multicores. That is true but it improves energy efficiency and time to solution.

HPCwire: What do you think of the latest vector accelerators: GPUs and Intel’s latest Xeon Phi line, or even the general-purpose DSPs from Texas Instruments? Is this a reasonable approach for vector computing or do you see this as an intermediate step to something else?

Wellein: Those approaches trade in hardware complexity for additional performance, thus shifting additional work load to the programmer. Application performance on those architectures is typically much more susceptible to programmer’s capability to write highly efficient code. At the “core” level they draw their performance from the same concepts as vector computers did, namely fine-grained data parallelism with a wide SIMD approach. The product of those two factors on an Intel Xeon Phi processor makes performance approximately 15 times higher than on a state-of-the art Xeon EP processor, making the accelerator even more sensitive to inefficient codes.

From classical vector computers they differ in the sense that accelerators are mainly optimized for FLOPS and not for FLOPS-to-byte ratios. This also becomes evident if you look at the hierarchical memory subsystems which do not provide the ease of use of the simple flat designs of vector computers.

Increasing fine-grained data parallelism in hardware may further boost the FLOPS of future accelerators, but will further decrease the FLOPS-to-byte ratios. Also non-SIMD parts in the codes may soon become severe bottlenecks – with greetings from Gene Amdahl!
HPCwire: Does the mass market for processors – generic servers, PCs, and now especially mobile devices – serve the needs of HPC? Do you think there is a reasonable cost/benefit for developing more specialized processors for this domain?

Wellein: The rapid development cycles and cost reductions of the mass markets have substantially fostered progress in computational science and engineering in the past decade. These achievements opened HPC capacities for the “masses” in science and engineering.

I do not feel that most of those users are today willing to pay a high price premium to develop specialized hardware solutions, which means for them to trade in capability for capacity. What is happening to the last vendor of specialized processors for supercomputing – NEC with its vector computing processors – is a good example. In recent years NEC lost many of their customers in the weather and climate community, one of the few communities that asked for specialized HPC solutions for a long time. The Lattice QCD community is still building specialized solutions, such as the QPACE project, but also gave up designing its own processors.

The requirements to an “optimal processor” differ substantially among the application communities and making specialized designs for each of them is economically unattractive for most of the users. They take what they get from the mass market vendors. As long as those deliver processors which provide a good compromise between “time to solution,” aka capability, and “throughput,” aka capacity, for most users, there is not enough pressure for large-scale investments in specialized HPC processors.

I do not feel comfortable with that trend because there is tendency to blame the application that it cannot make efficient use of those processors and one should adapt the solver or even the physical model to the processor! A provocative summary of this trend: “Seymour Cray built machines to solve problems. Today we look for problems which we can solve on the machines available!”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This