DOE to Field Pre-Exascale Supercomputers Within Four Years

By Michael Feldman

January 16, 2013

The national labs at Oak Ridge (ORNL), Argonne (ANL) and Lawrence Livermore (LLNL) are banding together for their next refresh of supercomputers. In late 2016 or early 2017, all three Department of Energy (DOE) centers are looking to deploy their first 100-plus petaflop systems, which will serve as precursors to their exascale machine further down the line. The labs will issue a request for proposal (RFP) later this year with the goal of awarding the work to two prime subcontractors.

The trio of lab partners, known as CORAL (Collaboration Oak Ridge Argonne Livermore), sent out a Request for Information (RFI) in December 2012 to gather information for the upcoming RFP. It’s possible three separate RFPs will be issued, corresponding to systems hosted at each lab, but according to the RFI addendum, the DOE is “strongly considering” wrapping the multiple acquisitions under a single RFP.

The CORAL partnership between ORNL, ANL and LLNL to secure these pre-exascale machines mirrors the approach of their DOE siblings, NERSC, Los Alamos and Sandia National Labs to acquire their next round of supercomputers. In the latter case, those centers are teaming up to deploy two new machines (NERSC-8 and Trinity) before the end of 2015, about a year ahead of their CORAL counterparts. Because of the time difference and the somewhat different user bases, NERSC-8 and Trinity are almost certainly going to be sub-100-petaflop systems.

The CORAL supercomputers are initially spec’d at 100 to 300 petaflops, along with 5 to 10 petabytes of memory and 70 to 150 PB of storage. “The expectation is that the proposed 2016-2017 system will be roughly an order of magnitude less in time-to-solution than today’s systems at our facilities,” states the RFI. If everything goes as planned, that means the top supercomputer at ORNL in four years will be about 10 times as powerful its current top machine, Titan, which currently delivers 24 peak petaflops and holds title to the most powerful computer on the planet.

Of course, the labs’ focus on “time to solution” is centered around the traditional DOE application domains DOE like molecular dynamics, cosmology, CFD combustion, and others that map to the agency’s Office of Science and NNSA missions. Since these are all Fortran and C/C++ codes, which employ mostly MPI and OpenMP to extract parallelism, the new platforms must be designed to support both legacy codes as well as any future frameworks for exascale computing.

Although the CORAL lab acquisitions have been combined, two distinct solutions will be chosen. One of them will be delivered as separate systems to both ORNL and ANL, while LLNL will choose one of two solutions for its own use. Theoretically that could mean that all three labs could deploy the same machine, but since the feds likes to spread the supercomputing love around, it most likely means two system vendors will get the opportunity to deliver these pre-exascale machines.

More than likely, we’re talking about IBM and Cray as the primes here, although SGI could also make a reasonable case for a leading-edge supercomputer. None of these vendors have revealed platforms topping 100 petaflops yet. Cray’s latest supercomputer, the XC30 maxes out at 100 petaflops, and even at that level of performance, would rely on GPUs or Intel coprocessors that are still under development. IBM is no doubt working on its successor to Blue Gene/Q. But whether Big Blue’s exascale roadmap continues to follow that architecture, incorporates their Power server technology, or comes up with something entirely novel, remains to be seen.

To help foster some of this development, part of the CORAL effort will be to fund non-recurring engineering (NRE) costs associated with these pre-exascale supercomputers. The intent is to pour up to $100 million into these NRE activities, the money to be split between the two prime subcontractors. Some of this could certainly filter down to processor vendors, memory makers, and interconnect providers as well.

It’s up to the bidding vendors to impress the labs on how best to apply the NRE funding, for example, better programmability, improving memory performance, adding embedded network controllers, maximizing data transfers between heterogeneous components, developing more efficient power management, and so on. Alternatively, the NRE could be directed at accelerating schedules, improving system cost, or TCO. The idea is to fund technologies or processes that the IT market would not be expected to deliver naturally.

Both the CORAL and NERSC-8/Trinity efforts are very much in the tradition of the “swim lanes” procurement approach — encouraging the development of competing supercomputing architectures by various labs and vendors. The DOE has simplified the process somewhat by splitting the six leading centers into two teams, each of which will seed money into exascale research via their preferred choice of industry players.

Since these systems will pave the way for exascale technologies, there’s a lot at stake here for the vendors. This isn’t, however, just restricted to a few elite machines for a handful of labs. Petascale supercomputers will become increasingly commonplace during the second half of this decade, and they will be based on many of the same technologies that will drive exascale systems. Those companies tapped by the DOE to develop these next-generation supercomputers will be in a prime position to build not just the first exaflop-capable platforms, but also a whole array of HPC products for a much wider market.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The EU Human Brain Project Reboots but Supercomputing Still Needed

June 26, 2017

The often contentious, EU-funded Human Brain Project whose initial aim was fixed firmly on full-brain simulation is now in the midst of a reboot targeting a more modest goal – development of informatics tools and data/ Read more…

By John Russell

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a Department of Energy sponsored collaboration between the Univ Read more…

By John Russell

UMass Dartmouth Reports on HPC Day 2017 Activities

June 26, 2017

UMass Dartmouth's Center for Scientific Computing & Visualization Research (CSCVR) organized and hosted the third annual "HPC Day 2017" on May 25th. This annual event showcases on-going scientific research in Massach Read more…

By Gaurav Khanna

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a D Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This