DOE to Field Pre-Exascale Supercomputers Within Four Years

By Michael Feldman

January 16, 2013

The national labs at Oak Ridge (ORNL), Argonne (ANL) and Lawrence Livermore (LLNL) are banding together for their next refresh of supercomputers. In late 2016 or early 2017, all three Department of Energy (DOE) centers are looking to deploy their first 100-plus petaflop systems, which will serve as precursors to their exascale machine further down the line. The labs will issue a request for proposal (RFP) later this year with the goal of awarding the work to two prime subcontractors.

The trio of lab partners, known as CORAL (Collaboration Oak Ridge Argonne Livermore), sent out a Request for Information (RFI) in December 2012 to gather information for the upcoming RFP. It’s possible three separate RFPs will be issued, corresponding to systems hosted at each lab, but according to the RFI addendum, the DOE is “strongly considering” wrapping the multiple acquisitions under a single RFP.

The CORAL partnership between ORNL, ANL and LLNL to secure these pre-exascale machines mirrors the approach of their DOE siblings, NERSC, Los Alamos and Sandia National Labs to acquire their next round of supercomputers. In the latter case, those centers are teaming up to deploy two new machines (NERSC-8 and Trinity) before the end of 2015, about a year ahead of their CORAL counterparts. Because of the time difference and the somewhat different user bases, NERSC-8 and Trinity are almost certainly going to be sub-100-petaflop systems.

The CORAL supercomputers are initially spec’d at 100 to 300 petaflops, along with 5 to 10 petabytes of memory and 70 to 150 PB of storage. “The expectation is that the proposed 2016-2017 system will be roughly an order of magnitude less in time-to-solution than today’s systems at our facilities,” states the RFI. If everything goes as planned, that means the top supercomputer at ORNL in four years will be about 10 times as powerful its current top machine, Titan, which currently delivers 24 peak petaflops and holds title to the most powerful computer on the planet.

Of course, the labs’ focus on “time to solution” is centered around the traditional DOE application domains DOE like molecular dynamics, cosmology, CFD combustion, and others that map to the agency’s Office of Science and NNSA missions. Since these are all Fortran and C/C++ codes, which employ mostly MPI and OpenMP to extract parallelism, the new platforms must be designed to support both legacy codes as well as any future frameworks for exascale computing.

Although the CORAL lab acquisitions have been combined, two distinct solutions will be chosen. One of them will be delivered as separate systems to both ORNL and ANL, while LLNL will choose one of two solutions for its own use. Theoretically that could mean that all three labs could deploy the same machine, but since the feds likes to spread the supercomputing love around, it most likely means two system vendors will get the opportunity to deliver these pre-exascale machines.

More than likely, we’re talking about IBM and Cray as the primes here, although SGI could also make a reasonable case for a leading-edge supercomputer. None of these vendors have revealed platforms topping 100 petaflops yet. Cray’s latest supercomputer, the XC30 maxes out at 100 petaflops, and even at that level of performance, would rely on GPUs or Intel coprocessors that are still under development. IBM is no doubt working on its successor to Blue Gene/Q. But whether Big Blue’s exascale roadmap continues to follow that architecture, incorporates their Power server technology, or comes up with something entirely novel, remains to be seen.

To help foster some of this development, part of the CORAL effort will be to fund non-recurring engineering (NRE) costs associated with these pre-exascale supercomputers. The intent is to pour up to $100 million into these NRE activities, the money to be split between the two prime subcontractors. Some of this could certainly filter down to processor vendors, memory makers, and interconnect providers as well.

It’s up to the bidding vendors to impress the labs on how best to apply the NRE funding, for example, better programmability, improving memory performance, adding embedded network controllers, maximizing data transfers between heterogeneous components, developing more efficient power management, and so on. Alternatively, the NRE could be directed at accelerating schedules, improving system cost, or TCO. The idea is to fund technologies or processes that the IT market would not be expected to deliver naturally.

Both the CORAL and NERSC-8/Trinity efforts are very much in the tradition of the “swim lanes” procurement approach — encouraging the development of competing supercomputing architectures by various labs and vendors. The DOE has simplified the process somewhat by splitting the six leading centers into two teams, each of which will seed money into exascale research via their preferred choice of industry players.

Since these systems will pave the way for exascale technologies, there’s a lot at stake here for the vendors. This isn’t, however, just restricted to a few elite machines for a handful of labs. Petascale supercomputers will become increasingly commonplace during the second half of this decade, and they will be based on many of the same technologies that will drive exascale systems. Those companies tapped by the DOE to develop these next-generation supercomputers will be in a prime position to build not just the first exaflop-capable platforms, but also a whole array of HPC products for a much wider market.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than ever, the network plays a crucial role. While fast, perform Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of personalized treatments based on an individual’s genetic makeup Read more…

By Warren Froelich

WCRP’s New Strategic Plan for Climate Research Highlights the Importance of HPC

July 19, 2018

As climate modeling increasingly leverages exascale computing and researchers warn of an impending computing gap in climate research, the World Climate Research Programme (WCRP) is developing its new Strategic Plan – and high-performance computing is slated to play a critical role. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Are Your Software Licenses Impeding Your Productivity?

In my previous article, Improving chip yield rates with cognitive manufacturing, I highlighted the costs associated with semiconductor manufacturing, and how cognitive methods can yield benefits in both design and manufacture.  Read more…

U.S. Exascale Computing Project Releases Software Technology Progress Report

July 19, 2018

As is often noted the race to exascale computing isn’t just about hardware. This week the U.S. Exascale Computing Project (ECP) released its latest Software Technology (ST) Capability Assessment Report detailing progress so far. Read more…

By John Russell

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of perso Read more…

By Warren Froelich

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This