DOE to Field Pre-Exascale Supercomputers Within Four Years

By Michael Feldman

January 16, 2013

The national labs at Oak Ridge (ORNL), Argonne (ANL) and Lawrence Livermore (LLNL) are banding together for their next refresh of supercomputers. In late 2016 or early 2017, all three Department of Energy (DOE) centers are looking to deploy their first 100-plus petaflop systems, which will serve as precursors to their exascale machine further down the line. The labs will issue a request for proposal (RFP) later this year with the goal of awarding the work to two prime subcontractors.

The trio of lab partners, known as CORAL (Collaboration Oak Ridge Argonne Livermore), sent out a Request for Information (RFI) in December 2012 to gather information for the upcoming RFP. It’s possible three separate RFPs will be issued, corresponding to systems hosted at each lab, but according to the RFI addendum, the DOE is “strongly considering” wrapping the multiple acquisitions under a single RFP.

The CORAL partnership between ORNL, ANL and LLNL to secure these pre-exascale machines mirrors the approach of their DOE siblings, NERSC, Los Alamos and Sandia National Labs to acquire their next round of supercomputers. In the latter case, those centers are teaming up to deploy two new machines (NERSC-8 and Trinity) before the end of 2015, about a year ahead of their CORAL counterparts. Because of the time difference and the somewhat different user bases, NERSC-8 and Trinity are almost certainly going to be sub-100-petaflop systems.

The CORAL supercomputers are initially spec’d at 100 to 300 petaflops, along with 5 to 10 petabytes of memory and 70 to 150 PB of storage. “The expectation is that the proposed 2016-2017 system will be roughly an order of magnitude less in time-to-solution than today’s systems at our facilities,” states the RFI. If everything goes as planned, that means the top supercomputer at ORNL in four years will be about 10 times as powerful its current top machine, Titan, which currently delivers 24 peak petaflops and holds title to the most powerful computer on the planet.

Of course, the labs’ focus on “time to solution” is centered around the traditional DOE application domains DOE like molecular dynamics, cosmology, CFD combustion, and others that map to the agency’s Office of Science and NNSA missions. Since these are all Fortran and C/C++ codes, which employ mostly MPI and OpenMP to extract parallelism, the new platforms must be designed to support both legacy codes as well as any future frameworks for exascale computing.

Although the CORAL lab acquisitions have been combined, two distinct solutions will be chosen. One of them will be delivered as separate systems to both ORNL and ANL, while LLNL will choose one of two solutions for its own use. Theoretically that could mean that all three labs could deploy the same machine, but since the feds likes to spread the supercomputing love around, it most likely means two system vendors will get the opportunity to deliver these pre-exascale machines.

More than likely, we’re talking about IBM and Cray as the primes here, although SGI could also make a reasonable case for a leading-edge supercomputer. None of these vendors have revealed platforms topping 100 petaflops yet. Cray’s latest supercomputer, the XC30 maxes out at 100 petaflops, and even at that level of performance, would rely on GPUs or Intel coprocessors that are still under development. IBM is no doubt working on its successor to Blue Gene/Q. But whether Big Blue’s exascale roadmap continues to follow that architecture, incorporates their Power server technology, or comes up with something entirely novel, remains to be seen.

To help foster some of this development, part of the CORAL effort will be to fund non-recurring engineering (NRE) costs associated with these pre-exascale supercomputers. The intent is to pour up to $100 million into these NRE activities, the money to be split between the two prime subcontractors. Some of this could certainly filter down to processor vendors, memory makers, and interconnect providers as well.

It’s up to the bidding vendors to impress the labs on how best to apply the NRE funding, for example, better programmability, improving memory performance, adding embedded network controllers, maximizing data transfers between heterogeneous components, developing more efficient power management, and so on. Alternatively, the NRE could be directed at accelerating schedules, improving system cost, or TCO. The idea is to fund technologies or processes that the IT market would not be expected to deliver naturally.

Both the CORAL and NERSC-8/Trinity efforts are very much in the tradition of the “swim lanes” procurement approach — encouraging the development of competing supercomputing architectures by various labs and vendors. The DOE has simplified the process somewhat by splitting the six leading centers into two teams, each of which will seed money into exascale research via their preferred choice of industry players.

Since these systems will pave the way for exascale technologies, there’s a lot at stake here for the vendors. This isn’t, however, just restricted to a few elite machines for a handful of labs. Petascale supercomputers will become increasingly commonplace during the second half of this decade, and they will be based on many of the same technologies that will drive exascale systems. Those companies tapped by the DOE to develop these next-generation supercomputers will be in a prime position to build not just the first exaflop-capable platforms, but also a whole array of HPC products for a much wider market.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This