Micron Readies Hybrid Memory Cube for Debut

By Tiffany Trader

January 17, 2013

The next-generation memory-maker Micron Technology was one of the many innovative companies demonstrating its wares on the Supercomputing Conference (SC12) show floor last November. Micron’s General Manager of Hybrid Technology Scott Graham was on hand to discuss the latest developments in their Hybrid Memory Cube (HMC) technology, a multi-chip module (MCM) that aims to address one of the biggest challenges in high performance computing: scaling the memory wall.

Memory architectures haven’t kept pace with the bandwidth requirements of multicore processors. As microprocessor speeds out-accelerated DRAM memory speeds, a bottleneck developed that is referred to as the memory wall. Stacked memory applications, however, enable higher memory bandwidth.

The Hybrid Memory Cube (HMC) is a new memory architecture that combines a high-speed logic layer with a stack of through-silicon-via (TSV) bonded memory die that enables impressive advantages over current technology. According to company figures, a single HMC offers a 15x performance increase and uses 70 percent less energy per bit when compared to DDR3 memory, and takes up 90 percent less space than today’s RDIMMs. The Cube is also scalable per application, which is not possible with DDR3 and DDR4. System designers have the option of employing the HMC as near memory for best performance or in a scalable module form factor, as far memory, for optimum power efficiency.

Micron HMC demo
Micron HMC demo at SC12 – screen shot

This is a huge leap forward from a technology perspective, noted Graham, compared to DDRx and other boutique memory products that are out there.

As HPCwire editor Michael Feldman explained in an earlier review of the technology:

The speedup and better energy efficiency is achieved principally through parallelism. Because the memory chips are stacked, there is more space for I/O pins through the TSVs. Thus each DRAM can be accessed with more (and/or wider) channels. The end result is that the controller can access many more banks of memory concurrently than can be accomplished with a two-dimensional DIMM. And because the controller and DRAM chips are in close proximity, latencies can be extremely low.

Judging by the degree and caliber of community involvement, Micron’s HMC technology represents a real breakthrough in how memory is used. In October 2011, Micron together with Samsung Electronics Co., Ltd., formed the Hybrid Memory Cube Consortium, tasked with developing an open industry standard that facilitates HMC integration into a wide variety of systems, platforms and applications.

The consortium is managed by a group of ten developers (Altera, ARM, HP, IBM, Micron, Microsoft, Open Silicon, Samsung, SK Hynix, and Xilinx), which have equal voting power on the final specification, along with an additional 75 adopters. The members are currently reviewing a draft specification, scheduled to be released next month, that details the communication interface between the Cube and the processor – CPU or GPU or FPGA.

Speaking to the initial set of targeted applications, the driving body notes that the “Hybrid Memory Cube represents the key to extending network system performance to push through the challenges of new 100G and 400G infrastructure growth. Eventually, HMC will drive exascale CPU system performance growth for next generation HPC systems.”

Companies are eager to get their hands on this product and Micron is working with an aggressive roadmap to meet that demand, Graham told HPCwire. The Gen1 demo, on display at SC12, was real silicon, and engineering samples for the Gen2 device are due out this summer. If all goes as planned, the Hybrid Memory Cube will be in full production at the end of this year or early 2014. In fact, contracts are already in place for the 2014 timeframe.

Hybrid Memory Cube demo
Side shot of the HMC demo at SC12. The actual Cube is on the far corner of the board.

High-speed networking vendors have signed up for the first productized version – with an HPC-centric product not far behind. Micron was not at liberty to identify these initial customers, but a look at the list of consortium partners turns up candidates like Lawrence Livermore, Cray, NEC, and T-Platforms.

The first couple of HMC implementations will be straight DRAM, but Micron and others are researching alternative memory combinations, for example multi-memory stacks that employ NAND flash and DRAM.

“There are all kinds of things you can do within the logic layer to pull different types of functionality, that are maybe off-chip today, into the logic layer and innovate further, with more functionality, better performance, and lower energy,” noted Graham.

Micron is framing this as an aggressive technology, emphasizing that this is the first time that all three of the largest memory makers (Micron, Samsung, and presumably SK Hynix) have teamed up.

“All of the memory manufacturers face the same challenge of being able to scale beyond 20nm, so we’re all coming up to even a bigger memory wall eventually,” explained Graham “Beyond 20nm, you’re going to have to move to some kind of management layer in order to continue with DRAM technology.”

The logic layer developed for the Cube allows for different flavors of technology – like spin-torque, memristor and others – to extend the viability of DRAM memory. “This means we can be really innovative with different types of cell technology and process technology so we can bring a more standard memory into the marketplace without these major shifts,” said Graham.

According to the Micron rep, they’ve also seen interest from companies outside the consortium. Most notably absent from the member roster are AMD and Intel, but that by no means implies a lack of involvement. Intel, for its part, demonstrated a prototype HMC device during the fall Intel Developer Forum in September 2011, deeming it the fastest and most efficient DRAM ever built. As Graham put it, these companies have opted not to be involved in the open standard in order to develop their own way of using the technology.

Still a year away from production, pricing for Cube products has not been announced, but early adopters should expect to pay a premium for the benefits of increased performance, power efficiency and space savings. The exascale community, in particular, will be paying close attention. If they’re to realize their goal of a 10^18 FLOPS machine within a 20MW power envelope, they’ll need all the help they can get.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

What’s New in HPC Research: Wind Farms, Gravitational Lenses, Web Portals & More

February 19, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This