Waiting for Exascale

By Gary Johnson

January 22, 2013

By current estimates, we’re about a decade away from having exascale computing capability. That’s a pretty long time, especially in our world of HPC. What will the world be like in 2022? What form will exascale computing take when it’s real? These are difficult questions to answer. Never before has the HPC community focused so intensively on a machine so far beyond its grasp. Nevertheless, stalwart cadres around the globe are drafting strategies, plans, and roadmaps to get from here to exascale.

So, what about the rest of us? Are there useful things we could do while waiting – or instead of waiting – for exascale? Perhaps there are. Let’s take a look at a few possibilities.

Education

Education is usually the last item on wish lists. We’ve put it first because, over the next decade, it will make or break US competitiveness. Also, we are talking about education here, as distinct from training. We have no real idea about what skills will be needed in the workforce a decade from now. However, it is safe to say that if we cultivate education and people learn how to learn, then they will be able to adapt to the future environment and acquire the skills they need to accomplish the tasks at hand.

For example, how about thinking through fundamental reformulations of our problems and creating ones that are intrinsically massively parallel – or developing completely new applications in social sciences, art, history, or music?

To focus more narrowly, our exascale workforce is now (at best) in high school. How can we ensure that they’ll be ready to exploit these wonderful new machines we’re intent on building? Perhaps we could exploit the budding MOOC (Massive Open Online Course) movement (e.g. Coursera, Udacity, edX) by providing free, open and web-accessible educational resources specifically tailored to the learning needs of our future exascalers.

To provide some rewards and recognition for those who would create these exaMOOCs, the federal agencies currently funding exascale research could expand their efforts to also include creation of exascale educational resources. Since many of those we wish to engage live in the academic “publish or perish” world, we could create appropriate high-prestige publication venues – ones that would duly impress academic promotion and tenure committees.

eScience

Are your high-end computers under your desk? Probably not. How often do you go “kick the tires” of your high-end computing resources? Probably seldom, if ever. So, from your perspective, where are they? If you don’t care where they are because anywhere will do as long as they are accessible to you, then you’re doing eScience. Nonetheless, most of us HPCers seem to think that eScience isn’t what we do and isn’t of interest to us.

In observational, experimental, and computational sciences, device environments are evolving, ranging from hand-held equipment up through unique national and international resources. Doing science means bringing any and all parts of these environments into play to accomplish your objectives. Thus, all of science is becoming eScience.

Accommodating this model of work will require shifting our view of capability computing from one that is facility-centric to one that is focused on the scientists and engineers we call our “end users.” Because of the financial interests associated with large user facilities, this shift will be difficult. However, there are a couple of steps that we could take now.

Federal agencies currently fund computational research by providing money for labor and processor cycles, in the form of an allocation, from public-funded facilities to cover computing needs. This funding model could be gradually shifted – we’ve got a decade to get it done before exascale arrives – to one that provides money to cover both labor and computing costs.

Such an arrangement would free “end users” to compute wherever it works best for them. They could buy their own computers, pool resources with colleagues for purchase of group computers, buy cycles in the cloud, or cash their money back in at those federally funded computing facilities. To the extent that the computing marketplace is rational and efficient, such a funding model should function well and provide the funding agencies with valuable feedback on what their “end users” really want. For further thoughts on this topic, see Jailbreaking HPC.

The other step toward a user-centric exascale environment is answering the question: Is there an (exascale) app for that? What we mean by this question is: Will the power of the connected exascale environment be readily accessible to users through their personal computing devices? By 2022, the answer needs to be “yes.” So, let’s start cultivating that point of view now and develop some terascale and petascale connected apps for personal computing devices, e.g., smart phones, tablets and whatever else may arrive as we continue down the path to exascale.

Big Data

The year 2012 saw exascale stall and “big data” surge. The ascendance of big data will continue, and this is especially true for unstructured data along with its analysis and visualization tools. It is simply too important to the economy and national security for this not to happen.

We in HPC have tended to ignore this area but, as discussed in a previous article (see Big Data Is HPC – Let’s Embrace It), it’s time to broaden our understanding of HPC and bring big data into the fold. Embracing it will open HPC up to a slew of new and interesting applications. It will also help us prepare for dealing with the data that exascale simulations will produce.

Broad HPC Deployment

Among those working at the leading edge of HPC, petascale computing is seen as a done deal. Making exascale happen is where the action is. We tend to forget that most of the computing world is operating at terascale or below.

HPC is a tool. Ultimately, its success must be measured through its adoption and use. Focusing so strongly on a performance target that is a factor of a million higher than the performance level currently experienced by the majority of HPC users may not be a good idea.

Certainly, the high end of computing needs to advance and due attention should be given to making that happen. Just as certainly, pushing the peak higher will not be useful unless we broaden the HPC base. We need to bring more people into active HPC use and we need to help users migrate upward in performance from terascale apps to petascale and beyond.

How might this be accomplished? Through the sort of educational activities mentioned above; by committing strongly to the development of new apps (see Meet the Exascale Apps), rather than just continuing to port the same old legacy apps into environments for which they were not designed and to which they are unsuited. And by making petascale computing ubiquitous (see Petaflop In a Box).

Computing in Industry

“Enhancing our economic competitiveness” is a standard item on the short list of justifications for pushing the HPC performance envelope. This argument would be more credible if we actually focused on enhancing industrial use of HPC. We already do that, you say? Well, if so, why is there such broad acceptance of the idea that there is a “missing middle” in HPC? Why are so many industrial users computing at the terascale and below?

We can’t have federal agencies intervening in industry’s business, you say? That would constitute the government setting industrial policy, and that would be just plain wrong. Well, what about NASA? Concerted efforts by NASA transformed the aerospace industry into one that makes heavy use of HPC, and is much better off for it. Could the Department of Energy do the same for the energy industry? Might that not be helpful to the economy?

Engagement

Will HPC still be an exclusive club a decade from now? In any case, should it be? Might we not be better off to engage as many people as possible in our enterprise? We think the answers are: no, no, and yes.

The more that people are engaged in computing, the better they will understand it – and support it. There are already signs that suggest broad engagement of the public in computing is feasible. Think of science activities like the Christmas Bird Count, NASA’s Zooniverse, or Foldit, just to name a few. There is clearly a cognitive surplus out there, ready to be useful.

Perhaps HPC and computational science should take greater advantage of this. This movement has been called Citizen Science. We think that has a nice ring. Between now and exascale, let’s get major citizen involvement in computational science and HPC.

How might his be done? Several possibilities come to mind. We could try crowd sourcing some software and hardware development. On the software side, crowd sourcing has already gained some popularity (e.g., TopCoder). Given the widespread availability of components, like GPUs, prototyping platforms (e.g., Arduino & Raspberry Pi), and other components (e.g., Adafruit Industries), hardware development doesn’t need to be just a spectator sport.

Those who choose not to participate in crowd sourcing might like to try crowd funding. The general public currently funds creative projects of many types through sites like Kickstarter, Indegogo and Petridish. Perhaps there’s room for sites that focus on topics related to HPC.

We could make use of hand-held devices and the growing “Internet of things” to develop new applications – making measurements and gathering data in a broadly dispersed fashion and then moving it through the HPC environment to be further processed, analyzed, and visualized. Depending on the application, this could involve active communication up through our highest end computing resources.

One interesting example of what might be accomplished is Quake Catchers, a concept developed by seismologists at the University of California Riverside that uses the general public’s laptop and smart phone accelerometers to improve earthquake warning systems. Another recent one involves using smart phones to predict the weather (see Your Android Phone Could Help Scientists Predict Your Weather). The areas of fitness, wellness and heath care are replete with additional opportunities.

Infrastructure

Between now and exascale, we need to do a whole lot of infrastructure development and build out. No matter what we’ll be calling the cloud by then, everything will be in it, from personal devices and Internet-enabled things up through those exascale computers. Robustness, connectivity and communications bandwidth will be keys to the success of this environment.

In a recent report card for America’s infrastructure, the American Society of Civil Engineers (ASCE) gave the US an overall grade of D. The ASCE didn’t specifically address computing and communications infrastructure, but the Technology CEO Council asserts that “The national information and telecommunications infrastructure currently deployed for today’s technological applications is not robust enough to support the technological advancements of the future.” Clearly there are lots of things we need to start doing now in order to have the infrastructure necessary to exploit exascale later.

Success Metrics

In moving forward with HPC there is also a lot of rethinking we need to devote to our success metrics. Kudos go to Bill Kramer at the National Center for Supercomputing Applications (NCSA) for taking the courageous step of opening the conversation on this topic (see Top problems with the TOP500 and Blue Waters Opts Out of TOP500). More recently, Bill Gropp, also from NCSA, has joined this conversation (see 2013:Time to stop talking about Exascale).

Alongside the TOP500, the Green500 and Graph 500 lists have gained in popularity in recent years and other possibilities have been suggested (see HPC Lists We’d Like to See), but the success metric issue remains an open one. Computers are tools and we need to measure their success by how well they enable discovery and solve problems. We’re not there yet, but maybe we can get a bit closer before 2022.

Let’s Not Wait

Exascale computing may be a decade away, but there’s a lot to accomplish to be ready to exploit it. We’ve explored a few options here. We make no claim that these constitute the right agenda for the coming decade, nor do we suggest that we’ve given an exhaustive to-do list. Our intention is rather to open the conversation about what we should do while “waiting” for exascale. So, let us know what you think.

About the Author

Gary M. Johnson is the founder of Computational Science Solutions, LLC, whose mission is to develop, advocate, and implement solutions for the global computational science and engineering community.

Dr. Johnson specializes in management of high performance computing, applied mathematics, and computational science research activities; advocacy, development, and management of high performance computing centers; development of national science and technology policy; and creation of education and research programs in computational engineering and science.

He has worked in academia, industry and government. He has held full professorships at Colorado State University and George Mason University, been a researcher at United Technologies Research Center, and worked for the Department of Defense, NASA, and the Department of Energy.

He is a graduate of the U.S. Air Force Academy; holds advanced degrees from Caltech and the von Karman Institute; and has a Ph.D. in applied sciences from the University of Brussels.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effects in new materials to supporting bioinformatics for advanced healthcare research to screening millions of possible chemical combinations to attack a deadly virus. Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This