Waiting for Exascale

By Gary Johnson

January 22, 2013

By current estimates, we’re about a decade away from having exascale computing capability. That’s a pretty long time, especially in our world of HPC. What will the world be like in 2022? What form will exascale computing take when it’s real? These are difficult questions to answer. Never before has the HPC community focused so intensively on a machine so far beyond its grasp. Nevertheless, stalwart cadres around the globe are drafting strategies, plans, and roadmaps to get from here to exascale.

So, what about the rest of us? Are there useful things we could do while waiting – or instead of waiting – for exascale? Perhaps there are. Let’s take a look at a few possibilities.

Education

Education is usually the last item on wish lists. We’ve put it first because, over the next decade, it will make or break US competitiveness. Also, we are talking about education here, as distinct from training. We have no real idea about what skills will be needed in the workforce a decade from now. However, it is safe to say that if we cultivate education and people learn how to learn, then they will be able to adapt to the future environment and acquire the skills they need to accomplish the tasks at hand.

For example, how about thinking through fundamental reformulations of our problems and creating ones that are intrinsically massively parallel – or developing completely new applications in social sciences, art, history, or music?

To focus more narrowly, our exascale workforce is now (at best) in high school. How can we ensure that they’ll be ready to exploit these wonderful new machines we’re intent on building? Perhaps we could exploit the budding MOOC (Massive Open Online Course) movement (e.g. Coursera, Udacity, edX) by providing free, open and web-accessible educational resources specifically tailored to the learning needs of our future exascalers.

To provide some rewards and recognition for those who would create these exaMOOCs, the federal agencies currently funding exascale research could expand their efforts to also include creation of exascale educational resources. Since many of those we wish to engage live in the academic “publish or perish” world, we could create appropriate high-prestige publication venues – ones that would duly impress academic promotion and tenure committees.

eScience

Are your high-end computers under your desk? Probably not. How often do you go “kick the tires” of your high-end computing resources? Probably seldom, if ever. So, from your perspective, where are they? If you don’t care where they are because anywhere will do as long as they are accessible to you, then you’re doing eScience. Nonetheless, most of us HPCers seem to think that eScience isn’t what we do and isn’t of interest to us.

In observational, experimental, and computational sciences, device environments are evolving, ranging from hand-held equipment up through unique national and international resources. Doing science means bringing any and all parts of these environments into play to accomplish your objectives. Thus, all of science is becoming eScience.

Accommodating this model of work will require shifting our view of capability computing from one that is facility-centric to one that is focused on the scientists and engineers we call our “end users.” Because of the financial interests associated with large user facilities, this shift will be difficult. However, there are a couple of steps that we could take now.

Federal agencies currently fund computational research by providing money for labor and processor cycles, in the form of an allocation, from public-funded facilities to cover computing needs. This funding model could be gradually shifted – we’ve got a decade to get it done before exascale arrives – to one that provides money to cover both labor and computing costs.

Such an arrangement would free “end users” to compute wherever it works best for them. They could buy their own computers, pool resources with colleagues for purchase of group computers, buy cycles in the cloud, or cash their money back in at those federally funded computing facilities. To the extent that the computing marketplace is rational and efficient, such a funding model should function well and provide the funding agencies with valuable feedback on what their “end users” really want. For further thoughts on this topic, see Jailbreaking HPC.

The other step toward a user-centric exascale environment is answering the question: Is there an (exascale) app for that? What we mean by this question is: Will the power of the connected exascale environment be readily accessible to users through their personal computing devices? By 2022, the answer needs to be “yes.” So, let’s start cultivating that point of view now and develop some terascale and petascale connected apps for personal computing devices, e.g., smart phones, tablets and whatever else may arrive as we continue down the path to exascale.

Big Data

The year 2012 saw exascale stall and “big data” surge. The ascendance of big data will continue, and this is especially true for unstructured data along with its analysis and visualization tools. It is simply too important to the economy and national security for this not to happen.

We in HPC have tended to ignore this area but, as discussed in a previous article (see Big Data Is HPC – Let’s Embrace It), it’s time to broaden our understanding of HPC and bring big data into the fold. Embracing it will open HPC up to a slew of new and interesting applications. It will also help us prepare for dealing with the data that exascale simulations will produce.

Broad HPC Deployment

Among those working at the leading edge of HPC, petascale computing is seen as a done deal. Making exascale happen is where the action is. We tend to forget that most of the computing world is operating at terascale or below.

HPC is a tool. Ultimately, its success must be measured through its adoption and use. Focusing so strongly on a performance target that is a factor of a million higher than the performance level currently experienced by the majority of HPC users may not be a good idea.

Certainly, the high end of computing needs to advance and due attention should be given to making that happen. Just as certainly, pushing the peak higher will not be useful unless we broaden the HPC base. We need to bring more people into active HPC use and we need to help users migrate upward in performance from terascale apps to petascale and beyond.

How might this be accomplished? Through the sort of educational activities mentioned above; by committing strongly to the development of new apps (see Meet the Exascale Apps), rather than just continuing to port the same old legacy apps into environments for which they were not designed and to which they are unsuited. And by making petascale computing ubiquitous (see Petaflop In a Box).

Computing in Industry

“Enhancing our economic competitiveness” is a standard item on the short list of justifications for pushing the HPC performance envelope. This argument would be more credible if we actually focused on enhancing industrial use of HPC. We already do that, you say? Well, if so, why is there such broad acceptance of the idea that there is a “missing middle” in HPC? Why are so many industrial users computing at the terascale and below?

We can’t have federal agencies intervening in industry’s business, you say? That would constitute the government setting industrial policy, and that would be just plain wrong. Well, what about NASA? Concerted efforts by NASA transformed the aerospace industry into one that makes heavy use of HPC, and is much better off for it. Could the Department of Energy do the same for the energy industry? Might that not be helpful to the economy?

Engagement

Will HPC still be an exclusive club a decade from now? In any case, should it be? Might we not be better off to engage as many people as possible in our enterprise? We think the answers are: no, no, and yes.

The more that people are engaged in computing, the better they will understand it – and support it. There are already signs that suggest broad engagement of the public in computing is feasible. Think of science activities like the Christmas Bird Count, NASA’s Zooniverse, or Foldit, just to name a few. There is clearly a cognitive surplus out there, ready to be useful.

Perhaps HPC and computational science should take greater advantage of this. This movement has been called Citizen Science. We think that has a nice ring. Between now and exascale, let’s get major citizen involvement in computational science and HPC.

How might his be done? Several possibilities come to mind. We could try crowd sourcing some software and hardware development. On the software side, crowd sourcing has already gained some popularity (e.g., TopCoder). Given the widespread availability of components, like GPUs, prototyping platforms (e.g., Arduino & Raspberry Pi), and other components (e.g., Adafruit Industries), hardware development doesn’t need to be just a spectator sport.

Those who choose not to participate in crowd sourcing might like to try crowd funding. The general public currently funds creative projects of many types through sites like Kickstarter, Indegogo and Petridish. Perhaps there’s room for sites that focus on topics related to HPC.

We could make use of hand-held devices and the growing “Internet of things” to develop new applications – making measurements and gathering data in a broadly dispersed fashion and then moving it through the HPC environment to be further processed, analyzed, and visualized. Depending on the application, this could involve active communication up through our highest end computing resources.

One interesting example of what might be accomplished is Quake Catchers, a concept developed by seismologists at the University of California Riverside that uses the general public’s laptop and smart phone accelerometers to improve earthquake warning systems. Another recent one involves using smart phones to predict the weather (see Your Android Phone Could Help Scientists Predict Your Weather). The areas of fitness, wellness and heath care are replete with additional opportunities.

Infrastructure

Between now and exascale, we need to do a whole lot of infrastructure development and build out. No matter what we’ll be calling the cloud by then, everything will be in it, from personal devices and Internet-enabled things up through those exascale computers. Robustness, connectivity and communications bandwidth will be keys to the success of this environment.

In a recent report card for America’s infrastructure, the American Society of Civil Engineers (ASCE) gave the US an overall grade of D. The ASCE didn’t specifically address computing and communications infrastructure, but the Technology CEO Council asserts that “The national information and telecommunications infrastructure currently deployed for today’s technological applications is not robust enough to support the technological advancements of the future.” Clearly there are lots of things we need to start doing now in order to have the infrastructure necessary to exploit exascale later.

Success Metrics

In moving forward with HPC there is also a lot of rethinking we need to devote to our success metrics. Kudos go to Bill Kramer at the National Center for Supercomputing Applications (NCSA) for taking the courageous step of opening the conversation on this topic (see Top problems with the TOP500 and Blue Waters Opts Out of TOP500). More recently, Bill Gropp, also from NCSA, has joined this conversation (see 2013:Time to stop talking about Exascale).

Alongside the TOP500, the Green500 and Graph 500 lists have gained in popularity in recent years and other possibilities have been suggested (see HPC Lists We’d Like to See), but the success metric issue remains an open one. Computers are tools and we need to measure their success by how well they enable discovery and solve problems. We’re not there yet, but maybe we can get a bit closer before 2022.

Let’s Not Wait

Exascale computing may be a decade away, but there’s a lot to accomplish to be ready to exploit it. We’ve explored a few options here. We make no claim that these constitute the right agenda for the coming decade, nor do we suggest that we’ve given an exhaustive to-do list. Our intention is rather to open the conversation about what we should do while “waiting” for exascale. So, let us know what you think.

About the Author

Gary M. Johnson is the founder of Computational Science Solutions, LLC, whose mission is to develop, advocate, and implement solutions for the global computational science and engineering community.

Dr. Johnson specializes in management of high performance computing, applied mathematics, and computational science research activities; advocacy, development, and management of high performance computing centers; development of national science and technology policy; and creation of education and research programs in computational engineering and science.

He has worked in academia, industry and government. He has held full professorships at Colorado State University and George Mason University, been a researcher at United Technologies Research Center, and worked for the Department of Defense, NASA, and the Department of Energy.

He is a graduate of the U.S. Air Force Academy; holds advanced degrees from Caltech and the von Karman Institute; and has a Ph.D. in applied sciences from the University of Brussels.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Quants Achieving Maximum Compute Power without the Learning Curve

The financial services industry is a fast-paced and data-intensive environment, and financial firms are realizing that they must modernize their IT infrastructures and invest in high performance computing (HPC) tools in order to survive. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This