STARnet Alliance Seeks Revolution in Chip Design

By Tiffany Trader

January 23, 2013

The Defense Advanced Research Projects Agency (DARPA) and the Semiconductor Research Corporation (SRC) have launched a new consortium to advance the pace of semiconductor innovation in the US as the technology approaches the limits of miniaturization.

The main thrust of the project is the creation of the Semiconductor Technology Advanced Research Network, aka STARnet, a network of six Semiconductor Technology Advanced Research centers, tasked with providing “long-term breakthrough research that results in paradigm shifts and multiple technology options.”

At each of the six STARnet university hubs – University of Illinois at Urbana-Champaign, University of Michigan, University of Minnesota, Notre Dame, University of California at Los Angeles and University of California at Berkeley – researchers will pursue CMOS-and-beyond technologies with an emphasis on design, software, system-level verification, and validation. By assessing and eliminating technological barriers identified by the International Technology Roadmap for Semiconductors (ITRS) and engaging in pre-competitive exploratory research, the teams will help secure the continued success of the nation’s microelectronics and defense industries.

DARPA and contributing companies have allocated $194 million in joint funding. Although the specific dollar amount varies according to their individual contracts, each STARnet center will receive more than $6 million annually for up to five years. The project is administered by Microelectronics Advanced Research Corporation (MARCO), a subsidiary of SRC.

The multi-disciplinary, collaborative effort draws upon the expertise of 148 faculty researchers and 400 graduate students from 39 universities. In addition to DARPA and SRC, members include the U.S. Air Force Research Laboratory, the Semiconductor Industry Association (SIA), and eight industry partners: Applied Materials, GLOBALFOUNDRIES, IBM, Intel Corporation, Micron Technology, Raytheon, Texas Instruments and United Technologies.

The semiconductor industry, a $144 billion market in the US, has so far benefited from a seemingly endless cycle of transistor shrinks, but Moore’s Law is waning. While researchers will likely find a way to squeeze silicon for another decade or so, there are undeniable physical limitations associated with the nanoscale frontier.

“The dimensions of the transistors of today are in the tens of atoms,” explains Todd Austin, professor of electrical engineering and computer science and C-FAR director. “We can still make them smaller, but not without challenges that threaten the progress of the computing industry.”

With microelectronics so tied to the nation’s security and economy, it’s imperative that these challenges are addressed. In the words of SRC Executive Director Gilroy Vandentop, “STARnet is a collaborative network of stellar research centers finding paths around the fundamental physical limits that threaten the long term growth of the microelectronics industry.”

A breakdown of the six multi-university teams and their primary areas of research:

  • The Center for Future Architectures Research (C-FAR), led by the University of Michigan, is focused on computer systems architectures for the 2020-2030 timeframe. They anticipate that application-driven architectures that can leverage emerging circuit fabrics will be key to extending the life of CMOS technology. Participating universities include Columbia, Duke, Georgia Tech, Harvard, MIT, Northeastern, Stanford, UC Berkeley, UCLA, UC San Diego, Illinois, Washington and Virginia.
  • The Center for Spintronic Materials, Interfaces and Novel Architectures (C-SPIN), led by the University of Minnesota, looks to electron spin-based memory and computation for its potential in overcoming challenges associated with traditional CMOS devices. Participating universities include UC Riverside, Cornell, Purdue, Carnegie Mellon, Alabama, Iowa, Johns Hopkins, MIT, Penn State, UC Santa Barbara, Michigan, Nebraska and Wisconsin.
  • The Center for Function Accelerated nanoMaterial Engineering (FAME), led by the University of California, Los Angeles, is studying nonconventional materials, including nanostructures with quantum-level properties. The research seeks to support analog, logic and memory devices for “beyond-binary computation.” Participating universities include Columbia, Cornell, UC Berkeley, MIT, UC Santa Barbara, Stanford, UC Irvine, Purdue, Rice, UC Riverside, North Carolina State, Caltech, Penn, West Virginia and Yale.
  • The Center for Low Energy Systems Technology (LEAST), led by the University of Notre Dame, will investigate new materials and devices for their potential to enable low-power electronics.Participating universities include Carnegie Mellon, Georgia Tech, Penn State, Purdue, UC Berkeley, UC San Diego, UC Santa Barbara, UT Austin and UT Dallas.
  • The Center for Systems on Nanoscale Information Fabrics (SONIC), led by the University of Illinois at Urbana-Champaign, is exploring the benefits of a transitioning from a deterministic to a statistical model. Participating universities include UC Berkeley, Stanford, UC Santa Barbara, UC San Diego, Michigan, Princeton and Carnegie Mellon.
  • The TerraSwarm Research Center (TerraSwarm), hosted by the University of California, Berkeley, seeks to develop city-scale capabilities using distributed applications on shared swarm platforms. Participating universities include Michigan, Washington, UT Dallas, Illinois at Urbana-Champaign, Penn, Caltech, Carnegie Mellon and UC San Diego.

“Each of these six centers is composed of several university teams jointly working toward a single goal: knocking down the barriers that limit the future of electronics,” comments DARPA program manager Jeffrey Rogers.

“With such an ambitious task, we have implemented a nonstandard approach. Instead of several different universities competing against each other for a single contract, we now have large teams working collaboratively, each contributing their own piece toward a large end goal.”

The project founders believe that long-term research is necessary to bolster semiconductor innovation and ensure the future of US military and industry competitiveness. They state that while short-term programs are suitable for sustaining an evolutionary pace, longer-term efforts are necessary to spur revolutionary advances, especially in light of impending technology constraints.

“STARnet will perform longer-term, more broad-based research, with the goal of expanding the knowledge base of the semiconductor industry, [and] researchers at STARnet centers willgenerate ideas for technology solutions,” notes the program literature.

Industry partners gain access to bleeding-edge research subsidized through Department of Defense funding. And while SRC estimates that STARnet research technology likely won’t be commercially viable for at least another 10-15 years, members will be able to sub-license the resulting IP.

STARnet continues the work of the Focus Center Research Program (FCRP), a similar program that has been in place since 1997 but is set to conclude on Jan. 31, 2013.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

HPE Extreme Performance Solutions

HPC-Driven Weather Simulations Improving Forecasting Capabilities

In September of 1938, a massive hurricane traversed the Atlantic Ocean and made landfall in New England. Due to inadequate and incorrect forecasting, the storm struck farther north and with greater intensity than had been predicted, leaving residents and authorities with virtually no warning or time to properly prepare. Read more…

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Intel Open Sources All Lustre Work, Brent Gorda Exits

April 19, 2017

In a letter to the Lustre community posted on the Intel website, Vice President of Intel's Data Center Group Trish Damkroger writes that effective immediately the company will be contributing all Lustre development to the open source community. Damkroger also announced that Brent Gorda, General Manager, High Performance Data Division at Intel is leaving the company. Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC and the Colocation Datacenter – a Bridge Too Far?

April 7, 2017

A more standardised HPC platform approach is making the running of HPC projects within increasing financial reach. Read more…

By Clive Longbottom, Quocirca

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This