ARM Muscles In on Intel’s Dominance in Datacenters

By Richard L. Brandt

January 28, 2013

In late 2007, Robert Hormuth called a former colleague he had worked with when they were both at Intel: Ian Drew, now a marketing vice president at ARM Holdings in the UK. Hormuth had moved on to Dell Computer’s Server and Architecture team, and wanted to explore a new idea.

Instead of relying exclusively on Intel’s powerful microprocessors to build the servers that handle billions of bits of data flowing through datacenters every second, would it be possible to use smaller, less powerful and lower-power ARM chips, now popular for cell phones and other hand-held devices?

“We thought ARM would be interesting for a web server or home server,” explains Hormuth, Senior Distinguished Engineer at Dell. “So we started kicking some tires in late 2007, early 2008.”

It seemed counter-intuitive at the time. But Dell’s Server & Architecture group had been watching the incredible growth in data moving though the Internet and the growing cloud computing business. They conducted a study of computer infrastructure at Fortune 500 companies. “The results were surprising and shocking,” says Hormuth. “They don’t need all the horsepower being thrown at them. They were just sitting there using up watts.” The big promise, of course, is that ARM chips use much less power than Intel’s powerful Xeon line of processors – about five watts vs. several tens of watts for Intel’s traditional Xeon chips.

The folks at ARM Holdings also thought it was a promising idea. “Dell approached us and started talking about the power challenges they were facing,” says Ian Ferguson, vice-president of marketing at ARM Holdings. “On the strength of that we started to do some work,” exploring the idea that small-core processors could better handle the task of moving data through datacenters.

A couple years later the organization started hosting a website with a server run by an old, and definitely inadequate, ARM-based processor, just to see what problems would come up and what design changes might be needed to fix them.

In 2012, the ARM architecture has begun to show real promise – or at least interest from chipmakers, server manufacturers and datacenter operators. AMD, Applied Micro, Calxeda, Marvell and Qualcomm are moving into the server-class ARM chip or system-on-chip (SoS) business, and Samsung is rumored to be doing the same. Dell, Hewlett-Packard, and Penguin Computing are starting to build ARM-based servers. Facebook has professed a strong interest in low-power server chips and is keeping an eye on both ARM and coming Intel chips.

The race to build low-power processors for datacenter servers has officially begun. Intel is pitting its low-power Atom processors against an array of ARM competitors. Most server makers are likely to continue to use Intel chips as they wait for the market to sort itself out, but the future will depend on how well each player rises to the need for more efficient processors.

It’s an important race to Intel. Its processors are at the core of over 90 percent of datacenter servers today. That market is a small fraction of the PC business. Some 90 million PCs were shipped in the last three months of 2012, and Intel owns about 80 percent of that market. But that number also shrank by five percent compared to the same period in 2011. Standard PCs are being displaced by tablet computers, smart phones and other portable devices. Intel has not been very successful moving into the new consumer products market, losing out to ARM and other processors. It does not want to lose the growing server market as well.

For the last two years Intel has asserted that the microserver business that will use ARM and other low-power chips is likely to represent just 10% of the market in datacenters. Further, Raejeanne Skillern, director of the Cloud Computing Data Center Group at Intel, says that two-thirds of that market will go to “brawny” core chips, with higher compute power than the “wimpy” core chips that ARM largely represents. But a lot of people disagree with that assessment. “The microserver market is going to be more important than Intel would argue today,” says Nathan Brookwood, Research Fellow at semiconductor consulting firm Insight 64.

Datacenter servers are of huge importance today, because they run the Internet. Companies don’t just use information technology to run their own businesses, IT is their business. Servers are not just a back-office expense item, they are a big part of many companies’ product costs. Modern tech giants, including Amazon, Apple, eBay, Google, Facebook, Microsoft and Yahoo deliver their services through datacenter servers. The less expensive the server (and the datacenter,) the lower the cost of producing their products.

There are several factors that will enter into the race. Low-power is a huge issue. Another is whether there are 64-bit processors available, and how much memory the chips can handle. A third depends on which applications the servers will run and how easy it will be to port software to the different chips. One of the most critical technology issues is the on-chip “fabric” that will tie together different components of the SoC to make sure they run at peak efficiency. Chip manufacturing technology and the balance between open or proprietary products will also play a role.

Next: Power – Less is More >

 

Power: Less is More

“Among the customers that we serve, both HPC as well as large web farms, one of the common themes that comes up is that in the world of semiconductors today, it’s all about performance per watt,” says Charles Wuischpard, CEO of Penguin Computing.

Although supercomputers crunching complex floating-point instructions need powerful CPUs, they also need to lower their power consumption or their growth will be limited by the sheer cost of electricity to run them. Adding co-processors and ARM chips into the mix to handle appropriate functions can help. Penguin makes servers with X-86 processors from Intel, but last fall announced a new microserver based on an ARM SoC from Calxeda.

And demand from datacenters keeps increasing. “I’ve seen estimates that demand for cloud computing is increasing anywhere from 20% to 44% per year,” says Mike Major, vice president of corporate marketing for Applied Micro. If the datacenters don’t dramatically increase their efficiency, he says, in a few years “datacenters are going to account for the better part of seven percent of the world’s energy consumption.”

ARM chips, designed for small portable devices, were created to survive on little power, which is a big part of their appeal. “The energy efficiency story is clearly an important one,” says Drew Schulke, product marketing manager for Dell’s Data Center Solutions business.

That goes beyond just how much power the chips themselves draw. Low-power chips generate less heat, reducing the need for expensive cooling equipment. Smaller chips built into microservers can take up less space, leaving smaller areas to cool.

But competing claims are hard to decipher. Intel boasts that its 6 watt S1200 Atom chip is the lowest-power 64-bit processor on the market. That may be, but it doesn’t really match the power efficiency of today’s ARM chips. “The only way you can say the S1200 has low power is to say that it’s way less than Intel’s mainstream Xeon chips,” says Insight 64’s Brookwood.

Calxeda, for example, has circulated a table comparing its own ECX1000 SoC to Intel’s S1200. The ARM chip draws 3.8 watts, compared to 6.1 watts for the S1200. Further, it provides four cores, compared to Intel’s two, and has a cache memory of 4 gigabytes compared to Intel’s 1GB. Plus, the S1200 is not a full “server class” solution because it doesn’t include a Serial Advanced Technology Attachment (SATA) microcontroller, Ethernet, or a fabric switch or fabric ports. Adding in those features would require an extra 10 watts of power, agrees Brookwood.

Intel, however, points out that the S1200 is a 64-bit processor. “It’s almost impossible to compare,” notes Intel’s Skillern. Plus Intel continues to work on future products that will be more efficient, including the upcoming Avoton. And in the end it’s not all just about the chip. Virtualization will also decrease the energy sink of a datacenter. “We have not been sitting still in either technology or IP,” says Skillern. “We have a history of investing and innovation.”

Even Ferguson at ARM Holdings agrees with that. “Intel is a very, very competent organization,” he says. The market for datacenter servers, he adds, “is not a game they’ll just give up on and let ARM walk in.”

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This