ARM Muscles In on Intel’s Dominance in Datacenters

By Richard L. Brandt

January 28, 2013

In late 2007, Robert Hormuth called a former colleague he had worked with when they were both at Intel: Ian Drew, now a marketing vice president at ARM Holdings in the UK. Hormuth had moved on to Dell Computer’s Server and Architecture team, and wanted to explore a new idea.

Instead of relying exclusively on Intel’s powerful microprocessors to build the servers that handle billions of bits of data flowing through datacenters every second, would it be possible to use smaller, less powerful and lower-power ARM chips, now popular for cell phones and other hand-held devices?

“We thought ARM would be interesting for a web server or home server,” explains Hormuth, Senior Distinguished Engineer at Dell. “So we started kicking some tires in late 2007, early 2008.”

It seemed counter-intuitive at the time. But Dell’s Server & Architecture group had been watching the incredible growth in data moving though the Internet and the growing cloud computing business. They conducted a study of computer infrastructure at Fortune 500 companies. “The results were surprising and shocking,” says Hormuth. “They don’t need all the horsepower being thrown at them. They were just sitting there using up watts.” The big promise, of course, is that ARM chips use much less power than Intel’s powerful Xeon line of processors – about five watts vs. several tens of watts for Intel’s traditional Xeon chips.

The folks at ARM Holdings also thought it was a promising idea. “Dell approached us and started talking about the power challenges they were facing,” says Ian Ferguson, vice-president of marketing at ARM Holdings. “On the strength of that we started to do some work,” exploring the idea that small-core processors could better handle the task of moving data through datacenters.

A couple years later the organization started hosting a website with a server run by an old, and definitely inadequate, ARM-based processor, just to see what problems would come up and what design changes might be needed to fix them.

In 2012, the ARM architecture has begun to show real promise – or at least interest from chipmakers, server manufacturers and datacenter operators. AMD, Applied Micro, Calxeda, Marvell and Qualcomm are moving into the server-class ARM chip or system-on-chip (SoS) business, and Samsung is rumored to be doing the same. Dell, Hewlett-Packard, and Penguin Computing are starting to build ARM-based servers. Facebook has professed a strong interest in low-power server chips and is keeping an eye on both ARM and coming Intel chips.

The race to build low-power processors for datacenter servers has officially begun. Intel is pitting its low-power Atom processors against an array of ARM competitors. Most server makers are likely to continue to use Intel chips as they wait for the market to sort itself out, but the future will depend on how well each player rises to the need for more efficient processors.

It’s an important race to Intel. Its processors are at the core of over 90 percent of datacenter servers today. That market is a small fraction of the PC business. Some 90 million PCs were shipped in the last three months of 2012, and Intel owns about 80 percent of that market. But that number also shrank by five percent compared to the same period in 2011. Standard PCs are being displaced by tablet computers, smart phones and other portable devices. Intel has not been very successful moving into the new consumer products market, losing out to ARM and other processors. It does not want to lose the growing server market as well.

For the last two years Intel has asserted that the microserver business that will use ARM and other low-power chips is likely to represent just 10% of the market in datacenters. Further, Raejeanne Skillern, director of the Cloud Computing Data Center Group at Intel, says that two-thirds of that market will go to “brawny” core chips, with higher compute power than the “wimpy” core chips that ARM largely represents. But a lot of people disagree with that assessment. “The microserver market is going to be more important than Intel would argue today,” says Nathan Brookwood, Research Fellow at semiconductor consulting firm Insight 64.

Datacenter servers are of huge importance today, because they run the Internet. Companies don’t just use information technology to run their own businesses, IT is their business. Servers are not just a back-office expense item, they are a big part of many companies’ product costs. Modern tech giants, including Amazon, Apple, eBay, Google, Facebook, Microsoft and Yahoo deliver their services through datacenter servers. The less expensive the server (and the datacenter,) the lower the cost of producing their products.

There are several factors that will enter into the race. Low-power is a huge issue. Another is whether there are 64-bit processors available, and how much memory the chips can handle. A third depends on which applications the servers will run and how easy it will be to port software to the different chips. One of the most critical technology issues is the on-chip “fabric” that will tie together different components of the SoC to make sure they run at peak efficiency. Chip manufacturing technology and the balance between open or proprietary products will also play a role.

Next: Power – Less is More >

 

Power: Less is More

“Among the customers that we serve, both HPC as well as large web farms, one of the common themes that comes up is that in the world of semiconductors today, it’s all about performance per watt,” says Charles Wuischpard, CEO of Penguin Computing.

Although supercomputers crunching complex floating-point instructions need powerful CPUs, they also need to lower their power consumption or their growth will be limited by the sheer cost of electricity to run them. Adding co-processors and ARM chips into the mix to handle appropriate functions can help. Penguin makes servers with X-86 processors from Intel, but last fall announced a new microserver based on an ARM SoC from Calxeda.

And demand from datacenters keeps increasing. “I’ve seen estimates that demand for cloud computing is increasing anywhere from 20% to 44% per year,” says Mike Major, vice president of corporate marketing for Applied Micro. If the datacenters don’t dramatically increase their efficiency, he says, in a few years “datacenters are going to account for the better part of seven percent of the world’s energy consumption.”

ARM chips, designed for small portable devices, were created to survive on little power, which is a big part of their appeal. “The energy efficiency story is clearly an important one,” says Drew Schulke, product marketing manager for Dell’s Data Center Solutions business.

That goes beyond just how much power the chips themselves draw. Low-power chips generate less heat, reducing the need for expensive cooling equipment. Smaller chips built into microservers can take up less space, leaving smaller areas to cool.

But competing claims are hard to decipher. Intel boasts that its 6 watt S1200 Atom chip is the lowest-power 64-bit processor on the market. That may be, but it doesn’t really match the power efficiency of today’s ARM chips. “The only way you can say the S1200 has low power is to say that it’s way less than Intel’s mainstream Xeon chips,” says Insight 64’s Brookwood.

Calxeda, for example, has circulated a table comparing its own ECX1000 SoC to Intel’s S1200. The ARM chip draws 3.8 watts, compared to 6.1 watts for the S1200. Further, it provides four cores, compared to Intel’s two, and has a cache memory of 4 gigabytes compared to Intel’s 1GB. Plus, the S1200 is not a full “server class” solution because it doesn’t include a Serial Advanced Technology Attachment (SATA) microcontroller, Ethernet, or a fabric switch or fabric ports. Adding in those features would require an extra 10 watts of power, agrees Brookwood.

Intel, however, points out that the S1200 is a 64-bit processor. “It’s almost impossible to compare,” notes Intel’s Skillern. Plus Intel continues to work on future products that will be more efficient, including the upcoming Avoton. And in the end it’s not all just about the chip. Virtualization will also decrease the energy sink of a datacenter. “We have not been sitting still in either technology or IP,” says Skillern. “We have a history of investing and innovation.”

Even Ferguson at ARM Holdings agrees with that. “Intel is a very, very competent organization,” he says. The market for datacenter servers, he adds, “is not a game they’ll just give up on and let ARM walk in.”

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break “Speed Limit”

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Intel Ships Drives Based on 3-D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3-D XPoint non-volatile memory technology as it targets data-driven workloads. Read more…

By George Leopold

Researchers Recreate ‘El Reno’ Tornado on Blue Waters Supercomputer

March 16, 2017

The United States experiences more tornadoes than any other country. About 1,200 tornadoes touch down each each year in the U.S. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

AMD Expands Exascale Vision at IEEE HPC Symposium

March 7, 2017

With the race towards exascale heating up – for example, the Exascale Computing Program PathForward awards are expected soon – AMD delivered more details of its exascale vision at last month’s 23rd IEEE Symposium on High Performance Computer Architecture. The chipmaker presented an “Exascale Node Architecture (ENA) as the primary building block for exascale machine” including descriptions of component, interconnect, and packaging strategy along with simulation benchmarks to bolster its case. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This