The Week in HPC Research

By Nicole Hemsoth

January 31, 2013

Visualization at Exascale

Considering the difficulties in reaching the exascale computing goal in the prescribed timeframe of 2020, we should expect to see a growing body of research on this important topic. Recently, Japanese researchers have written a paper describing an interesting new approach to visualization for the exascale era. More specifically, their strategy involves the interactive viewing of in-situ visualization.

In their paper, Akira Kageyama and Tomoki Yamada of the Graduate School of System Informatics at Kobe University argue that in-situ visualization (applying the visualization at run-time) is “an inevitable approach” necessary for reducing the size of data output. The problem that they identified was that in-situ visualization loses interactivity in the absence of a suitable steering method.

The duo propose a new method for the interactive analysis of in-situ visualization images produced by a batch simulation job. Here’s how they describe the process, generates its output as movies, not numbers:

In our method, we apply as many in-situ visualization as possible and analyze the output image data later in an interactive way. See Fig. 1d. Any information on the simulated phenomena is supposed to be in the data set of the images, and the analyzer can dynamically explore the image space.

When an output movie from one in-situ visualization is compressed to a reasonable size, say 10 MB, the total output data size is only 10 TB even the number of applied in-situ visualization is one million. This data is still smaller than the size of raw numerical data in exascale simulations that would amount to the order of PB.

The full article [pdf] explains the entire process in detail.

Next >> Programming at Exascale

Programming at Exascale

While the HPC community undoubtedly enjoys pondering the “exascale problem,” they are also acutely aware that this is no mere academic exercise. There are significant unknowns associated with this next major FLOPs goalpost. As German researcher Jens Breitbart notes in a new research paper, neither the CPU architecture or programming model have been determined. Fielding such machines in the next decade will require huge advances.

“Multicore CPUs are not expected to scale to the required number of cores per node, but hybrid multicore CPUs consisting of different kinds of processing elements are expected to solve this issue,” writes Breitbart in the International Journal of Networking and Computing. He proposes that future hybrid clusters employ a dataflow-like programming model.

The article also discusses “how current shared memory, GPU and PGAS programming models can deal with the upcoming hardware challenges [and] describes how synchronization can generate unneeded inter- and intra-node transfers in case the memory consistency model is not optimal.”

At the heart of Breitbart’s proposal is “a variation of the PGAS model allowing implicit fine-grained pairwise synchronization among the nodes and the different kinds of processors.”

Next >> Green Cloud Computing

Green Cloud Computing

Researchers from the School of Information Technology at Jiangxi University of Finance and Economics in China are expecting big things from green cloud computing (GCC). A paper in IET Communications makes the case for a growing ecosystem of cloud consumers and cloud providers, that is entirely network-based. Under this coming paradigm, “a user simply submits its service request to the cloud service provider with the connection of Internet or wired/wireless networks,” the authors write.

“The result of the requested service is delivered back to the user in time, whereas the information storage and process, interoperating protocols, service composition, communications and distributed computing, are all smoothly interactive by the networks,” they add.

They describe Green Cloud Computing (GCC) as the “provisioning of cloud services under a set of energy consumption criteria.” Their survey takes into account GCC schemes in relationship to networks, microprocessors, task scheduling algorithms, virtualisation technology, cooling systems, networks and disk storage.

Next >> MPI and Multithreading for Molecular Docking

MPI and Multithreading for Molecular Docking

A group of researchers from Lawrence Livermore Lab has published a new paper in the January 2013 edition of Journal of Computational Chemistry on the subject of MPI and multithreading for molecular docking. More specifically, they are focused on the parallel molecular docking of large databases on petascale computers.

The researchers adopted a mixed parallel scheme of both message passing interface (MPI) and multithreading implemented in the AutoDock Vina molecular docking program. The resulting program, named VinaLC, was run on the petascale systems at Lawrence Livermore National Laboratory.

“To exploit the typical cluster-type supercomputers, thousands of docking calculations were dispatched by the master process to run simultaneously on thousands of slave processes,” the authors write. “Each docking calculation takes one slave process on one node, and within the node each docking calculation runs via multithreading on multiple CPU cores and shared memory.”

Using this approach, the code was able to scale to more than 15K CPUs with a low overhead cost of 3.94%. One million docking calculations were processed in just 1.4 hours.

Next >> XSEDE Role in Science Education

XSEDE Role in Science Education

Steven Gordon has penned an article in IEEE publication Computing in Science & Engineering, elucidating the importance of the XSEDE system in advancing science education. In particular, Gordon highlights the “need for computational science programs that prepare the current and next generation of researchers, educators, and practitioners to effectively utilize digital services in support of science, technology, engineering, and mathematics.”

And he believes that XSEDE can “facilitate the founding and expansion of such programs.”

XSEDE stands for Extreme Science and Engineering Discovery Environment. Funded by the National Science Foundation, this five-year, $121-million project both replaces and expands the NSF TeraGrid.

According to Gordon, XSEDE’s Education and Outreach services have three main goals:

  • Prepare the current and next generation of researchers, educators, and practitioners to effectively utilize digital services in support of science, technology, engineering, and mathematics (STEM).
  • Create a significantly larger and more diverse workforce in STEM.
  • Inculcate the use of digital services as part of the routine practice for advancing scientific discovery.

Gordon serves as the national lead for the XSEDE Education Program. He has been affiliated with Ohio State University since 1975.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

China’s Expanding Effort to Win in Microchips

July 27, 2017

The global battle for preeminence, or at least national independence, in semiconductor technology and manufacturing continues to heat up with Europe, China, Japan, and the U.S. all vying for sway. A fascinating article ( Read more…

By John Russell

Hyperion: Storage to Lead HPC Growth in 2016-2021

July 27, 2017

Global HPC external storage revenues will grow 7.8% over the 2016-2021 timeframe according to an updated forecast released by Hyperion Research this week. HPC server sales, by comparison, will grow a modest 5.8% to $14.8 Read more…

By John Russell

Exascale FY18 Budget – The Senate Provides Their Input

July 27, 2017

In the federal budgeting world, “regular order” is a meaningful term that is fondly remembered by members of both the Congress and the Executive Branch. Regular order is the established process whereby an Administrat Read more…

By Alex R. Larzelere

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

India Plots Three-Phase Indigenous Supercomputing Strategy

July 26, 2017

Additional details on India's plans to stand up an indigenous supercomputer came to light earlier this week. As reported in the Indian press, the Rs 4,500-crore (~$675 million) supercomputing project, approved by the Ind Read more…

By Tiffany Trader

Exascale FY18 Budget – The Senate Provides Their Input

July 27, 2017

In the federal budgeting world, “regular order” is a meaningful term that is fondly remembered by members of both the Congress and the Executive Branch. Reg Read more…

By Alex R. Larzelere

India Plots Three-Phase Indigenous Supercomputing Strategy

July 26, 2017

Additional details on India's plans to stand up an indigenous supercomputer came to light earlier this week. As reported in the Indian press, the Rs 4,500-crore Read more…

By Tiffany Trader

Tuning InfiniBand Interconnects Using Congestion Control

July 26, 2017

InfiniBand is among the most common and well-known cluster interconnect technologies. However, the complexities of an InfiniBand (IB) network can frustrate the Read more…

By Adam Dorsey

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This