The Week in HPC Research

By Nicole Hemsoth

January 31, 2013

Visualization at Exascale

Considering the difficulties in reaching the exascale computing goal in the prescribed timeframe of 2020, we should expect to see a growing body of research on this important topic. Recently, Japanese researchers have written a paper describing an interesting new approach to visualization for the exascale era. More specifically, their strategy involves the interactive viewing of in-situ visualization.

In their paper, Akira Kageyama and Tomoki Yamada of the Graduate School of System Informatics at Kobe University argue that in-situ visualization (applying the visualization at run-time) is “an inevitable approach” necessary for reducing the size of data output. The problem that they identified was that in-situ visualization loses interactivity in the absence of a suitable steering method.

The duo propose a new method for the interactive analysis of in-situ visualization images produced by a batch simulation job. Here’s how they describe the process, generates its output as movies, not numbers:

In our method, we apply as many in-situ visualization as possible and analyze the output image data later in an interactive way. See Fig. 1d. Any information on the simulated phenomena is supposed to be in the data set of the images, and the analyzer can dynamically explore the image space.

When an output movie from one in-situ visualization is compressed to a reasonable size, say 10 MB, the total output data size is only 10 TB even the number of applied in-situ visualization is one million. This data is still smaller than the size of raw numerical data in exascale simulations that would amount to the order of PB.

The full article [pdf] explains the entire process in detail.

Next >> Programming at Exascale

Programming at Exascale

While the HPC community undoubtedly enjoys pondering the “exascale problem,” they are also acutely aware that this is no mere academic exercise. There are significant unknowns associated with this next major FLOPs goalpost. As German researcher Jens Breitbart notes in a new research paper, neither the CPU architecture or programming model have been determined. Fielding such machines in the next decade will require huge advances.

“Multicore CPUs are not expected to scale to the required number of cores per node, but hybrid multicore CPUs consisting of different kinds of processing elements are expected to solve this issue,” writes Breitbart in the International Journal of Networking and Computing. He proposes that future hybrid clusters employ a dataflow-like programming model.

The article also discusses “how current shared memory, GPU and PGAS programming models can deal with the upcoming hardware challenges [and] describes how synchronization can generate unneeded inter- and intra-node transfers in case the memory consistency model is not optimal.”

At the heart of Breitbart’s proposal is “a variation of the PGAS model allowing implicit fine-grained pairwise synchronization among the nodes and the different kinds of processors.”

Next >> Green Cloud Computing

Green Cloud Computing

Researchers from the School of Information Technology at Jiangxi University of Finance and Economics in China are expecting big things from green cloud computing (GCC). A paper in IET Communications makes the case for a growing ecosystem of cloud consumers and cloud providers, that is entirely network-based. Under this coming paradigm, “a user simply submits its service request to the cloud service provider with the connection of Internet or wired/wireless networks,” the authors write.

“The result of the requested service is delivered back to the user in time, whereas the information storage and process, interoperating protocols, service composition, communications and distributed computing, are all smoothly interactive by the networks,” they add.

They describe Green Cloud Computing (GCC) as the “provisioning of cloud services under a set of energy consumption criteria.” Their survey takes into account GCC schemes in relationship to networks, microprocessors, task scheduling algorithms, virtualisation technology, cooling systems, networks and disk storage.

Next >> MPI and Multithreading for Molecular Docking

MPI and Multithreading for Molecular Docking

A group of researchers from Lawrence Livermore Lab has published a new paper in the January 2013 edition of Journal of Computational Chemistry on the subject of MPI and multithreading for molecular docking. More specifically, they are focused on the parallel molecular docking of large databases on petascale computers.

The researchers adopted a mixed parallel scheme of both message passing interface (MPI) and multithreading implemented in the AutoDock Vina molecular docking program. The resulting program, named VinaLC, was run on the petascale systems at Lawrence Livermore National Laboratory.

“To exploit the typical cluster-type supercomputers, thousands of docking calculations were dispatched by the master process to run simultaneously on thousands of slave processes,” the authors write. “Each docking calculation takes one slave process on one node, and within the node each docking calculation runs via multithreading on multiple CPU cores and shared memory.”

Using this approach, the code was able to scale to more than 15K CPUs with a low overhead cost of 3.94%. One million docking calculations were processed in just 1.4 hours.

Next >> XSEDE Role in Science Education

XSEDE Role in Science Education

Steven Gordon has penned an article in IEEE publication Computing in Science & Engineering, elucidating the importance of the XSEDE system in advancing science education. In particular, Gordon highlights the “need for computational science programs that prepare the current and next generation of researchers, educators, and practitioners to effectively utilize digital services in support of science, technology, engineering, and mathematics.”

And he believes that XSEDE can “facilitate the founding and expansion of such programs.”

XSEDE stands for Extreme Science and Engineering Discovery Environment. Funded by the National Science Foundation, this five-year, $121-million project both replaces and expands the NSF TeraGrid.

According to Gordon, XSEDE’s Education and Outreach services have three main goals:

  • Prepare the current and next generation of researchers, educators, and practitioners to effectively utilize digital services in support of science, technology, engineering, and mathematics (STEM).
  • Create a significantly larger and more diverse workforce in STEM.
  • Inculcate the use of digital services as part of the routine practice for advancing scientific discovery.

Gordon serves as the national lead for the XSEDE Education Program. He has been affiliated with Ohio State University since 1975.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This