The Week in HPC Research

By Nicole Hemsoth

January 31, 2013

Visualization at Exascale

Considering the difficulties in reaching the exascale computing goal in the prescribed timeframe of 2020, we should expect to see a growing body of research on this important topic. Recently, Japanese researchers have written a paper describing an interesting new approach to visualization for the exascale era. More specifically, their strategy involves the interactive viewing of in-situ visualization.

In their paper, Akira Kageyama and Tomoki Yamada of the Graduate School of System Informatics at Kobe University argue that in-situ visualization (applying the visualization at run-time) is “an inevitable approach” necessary for reducing the size of data output. The problem that they identified was that in-situ visualization loses interactivity in the absence of a suitable steering method.

The duo propose a new method for the interactive analysis of in-situ visualization images produced by a batch simulation job. Here’s how they describe the process, generates its output as movies, not numbers:

In our method, we apply as many in-situ visualization as possible and analyze the output image data later in an interactive way. See Fig. 1d. Any information on the simulated phenomena is supposed to be in the data set of the images, and the analyzer can dynamically explore the image space.

When an output movie from one in-situ visualization is compressed to a reasonable size, say 10 MB, the total output data size is only 10 TB even the number of applied in-situ visualization is one million. This data is still smaller than the size of raw numerical data in exascale simulations that would amount to the order of PB.

The full article [pdf] explains the entire process in detail.

Next >> Programming at Exascale

Programming at Exascale

While the HPC community undoubtedly enjoys pondering the “exascale problem,” they are also acutely aware that this is no mere academic exercise. There are significant unknowns associated with this next major FLOPs goalpost. As German researcher Jens Breitbart notes in a new research paper, neither the CPU architecture or programming model have been determined. Fielding such machines in the next decade will require huge advances.

“Multicore CPUs are not expected to scale to the required number of cores per node, but hybrid multicore CPUs consisting of different kinds of processing elements are expected to solve this issue,” writes Breitbart in the International Journal of Networking and Computing. He proposes that future hybrid clusters employ a dataflow-like programming model.

The article also discusses “how current shared memory, GPU and PGAS programming models can deal with the upcoming hardware challenges [and] describes how synchronization can generate unneeded inter- and intra-node transfers in case the memory consistency model is not optimal.”

At the heart of Breitbart’s proposal is “a variation of the PGAS model allowing implicit fine-grained pairwise synchronization among the nodes and the different kinds of processors.”

Next >> Green Cloud Computing

Green Cloud Computing

Researchers from the School of Information Technology at Jiangxi University of Finance and Economics in China are expecting big things from green cloud computing (GCC). A paper in IET Communications makes the case for a growing ecosystem of cloud consumers and cloud providers, that is entirely network-based. Under this coming paradigm, “a user simply submits its service request to the cloud service provider with the connection of Internet or wired/wireless networks,” the authors write.

“The result of the requested service is delivered back to the user in time, whereas the information storage and process, interoperating protocols, service composition, communications and distributed computing, are all smoothly interactive by the networks,” they add.

They describe Green Cloud Computing (GCC) as the “provisioning of cloud services under a set of energy consumption criteria.” Their survey takes into account GCC schemes in relationship to networks, microprocessors, task scheduling algorithms, virtualisation technology, cooling systems, networks and disk storage.

Next >> MPI and Multithreading for Molecular Docking

MPI and Multithreading for Molecular Docking

A group of researchers from Lawrence Livermore Lab has published a new paper in the January 2013 edition of Journal of Computational Chemistry on the subject of MPI and multithreading for molecular docking. More specifically, they are focused on the parallel molecular docking of large databases on petascale computers.

The researchers adopted a mixed parallel scheme of both message passing interface (MPI) and multithreading implemented in the AutoDock Vina molecular docking program. The resulting program, named VinaLC, was run on the petascale systems at Lawrence Livermore National Laboratory.

“To exploit the typical cluster-type supercomputers, thousands of docking calculations were dispatched by the master process to run simultaneously on thousands of slave processes,” the authors write. “Each docking calculation takes one slave process on one node, and within the node each docking calculation runs via multithreading on multiple CPU cores and shared memory.”

Using this approach, the code was able to scale to more than 15K CPUs with a low overhead cost of 3.94%. One million docking calculations were processed in just 1.4 hours.

Next >> XSEDE Role in Science Education

XSEDE Role in Science Education

Steven Gordon has penned an article in IEEE publication Computing in Science & Engineering, elucidating the importance of the XSEDE system in advancing science education. In particular, Gordon highlights the “need for computational science programs that prepare the current and next generation of researchers, educators, and practitioners to effectively utilize digital services in support of science, technology, engineering, and mathematics.”

And he believes that XSEDE can “facilitate the founding and expansion of such programs.”

XSEDE stands for Extreme Science and Engineering Discovery Environment. Funded by the National Science Foundation, this five-year, $121-million project both replaces and expands the NSF TeraGrid.

According to Gordon, XSEDE’s Education and Outreach services have three main goals:

  • Prepare the current and next generation of researchers, educators, and practitioners to effectively utilize digital services in support of science, technology, engineering, and mathematics (STEM).
  • Create a significantly larger and more diverse workforce in STEM.
  • Inculcate the use of digital services as part of the routine practice for advancing scientific discovery.

Gordon serves as the national lead for the XSEDE Education Program. He has been affiliated with Ohio State University since 1975.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Live and in Color, Meet the European Student Cluster Teams

November 21, 2017

The SC17 Student Cluster Competition welcomed two teams from Europe, the German team of FAU/TUC and Team Poland, the pride of Warsaw. Let's get to know them better through the miracle of video..... Team FAU/TUC is a c Read more…

By Dan Olds

SC17 Student Cluster Kick Off – Guts, Glory, Grep

November 21, 2017

The SC17 Student Cluster Competition started with a well-orchestrated kick-off emceed by Stephen Harrell, the competition chair. It began with a welcome from SC17 chair Bernd Mohr, where he lauded the competition for Read more…

By Dan Olds

Activist Investor Starboard Buys 10.7% Stake in Mellanox; Sale Possible?

November 20, 2017

Starboard Value has reportedly taken a 10.7 percent stake in interconnect specialist Mellanox Technologies, and according to the Wall Street Journal, has urged the company “to improve its margins and stock and explore Read more…

By John Russell

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

Installation of Sierra Supercomputer Steams Along at LLNL

November 20, 2017

Sierra, the 125 petaflops (peak) machine based on IBM’s Power9 chip being built at Lawrence Livermore National Laboratory, sometimes takes a back seat to Summit, the ~200 petaflops system being built at Oak Ridge Natio Read more…

By John Russell

Live and in Color, Meet the European Student Cluster Teams

November 21, 2017

The SC17 Student Cluster Competition welcomed two teams from Europe, the German team of FAU/TUC and Team Poland, the pride of Warsaw. Let's get to know them bet Read more…

By Dan Olds

SC17 Student Cluster Kick Off – Guts, Glory, Grep

November 21, 2017

The SC17 Student Cluster Competition started with a well-orchestrated kick-off emceed by Stephen Harrell, the competition chair. It began with a welcome from Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Share This