The Week in HPC Research

By Nicole Hemsoth

January 31, 2013

Visualization at Exascale

Considering the difficulties in reaching the exascale computing goal in the prescribed timeframe of 2020, we should expect to see a growing body of research on this important topic. Recently, Japanese researchers have written a paper describing an interesting new approach to visualization for the exascale era. More specifically, their strategy involves the interactive viewing of in-situ visualization.

In their paper, Akira Kageyama and Tomoki Yamada of the Graduate School of System Informatics at Kobe University argue that in-situ visualization (applying the visualization at run-time) is “an inevitable approach” necessary for reducing the size of data output. The problem that they identified was that in-situ visualization loses interactivity in the absence of a suitable steering method.

The duo propose a new method for the interactive analysis of in-situ visualization images produced by a batch simulation job. Here’s how they describe the process, generates its output as movies, not numbers:

In our method, we apply as many in-situ visualization as possible and analyze the output image data later in an interactive way. See Fig. 1d. Any information on the simulated phenomena is supposed to be in the data set of the images, and the analyzer can dynamically explore the image space.

When an output movie from one in-situ visualization is compressed to a reasonable size, say 10 MB, the total output data size is only 10 TB even the number of applied in-situ visualization is one million. This data is still smaller than the size of raw numerical data in exascale simulations that would amount to the order of PB.

The full article [pdf] explains the entire process in detail.

Next >> Programming at Exascale

Programming at Exascale

While the HPC community undoubtedly enjoys pondering the “exascale problem,” they are also acutely aware that this is no mere academic exercise. There are significant unknowns associated with this next major FLOPs goalpost. As German researcher Jens Breitbart notes in a new research paper, neither the CPU architecture or programming model have been determined. Fielding such machines in the next decade will require huge advances.

“Multicore CPUs are not expected to scale to the required number of cores per node, but hybrid multicore CPUs consisting of different kinds of processing elements are expected to solve this issue,” writes Breitbart in the International Journal of Networking and Computing. He proposes that future hybrid clusters employ a dataflow-like programming model.

The article also discusses “how current shared memory, GPU and PGAS programming models can deal with the upcoming hardware challenges [and] describes how synchronization can generate unneeded inter- and intra-node transfers in case the memory consistency model is not optimal.”

At the heart of Breitbart’s proposal is “a variation of the PGAS model allowing implicit fine-grained pairwise synchronization among the nodes and the different kinds of processors.”

Next >> Green Cloud Computing

Green Cloud Computing

Researchers from the School of Information Technology at Jiangxi University of Finance and Economics in China are expecting big things from green cloud computing (GCC). A paper in IET Communications makes the case for a growing ecosystem of cloud consumers and cloud providers, that is entirely network-based. Under this coming paradigm, “a user simply submits its service request to the cloud service provider with the connection of Internet or wired/wireless networks,” the authors write.

“The result of the requested service is delivered back to the user in time, whereas the information storage and process, interoperating protocols, service composition, communications and distributed computing, are all smoothly interactive by the networks,” they add.

They describe Green Cloud Computing (GCC) as the “provisioning of cloud services under a set of energy consumption criteria.” Their survey takes into account GCC schemes in relationship to networks, microprocessors, task scheduling algorithms, virtualisation technology, cooling systems, networks and disk storage.

Next >> MPI and Multithreading for Molecular Docking

MPI and Multithreading for Molecular Docking

A group of researchers from Lawrence Livermore Lab has published a new paper in the January 2013 edition of Journal of Computational Chemistry on the subject of MPI and multithreading for molecular docking. More specifically, they are focused on the parallel molecular docking of large databases on petascale computers.

The researchers adopted a mixed parallel scheme of both message passing interface (MPI) and multithreading implemented in the AutoDock Vina molecular docking program. The resulting program, named VinaLC, was run on the petascale systems at Lawrence Livermore National Laboratory.

“To exploit the typical cluster-type supercomputers, thousands of docking calculations were dispatched by the master process to run simultaneously on thousands of slave processes,” the authors write. “Each docking calculation takes one slave process on one node, and within the node each docking calculation runs via multithreading on multiple CPU cores and shared memory.”

Using this approach, the code was able to scale to more than 15K CPUs with a low overhead cost of 3.94%. One million docking calculations were processed in just 1.4 hours.

Next >> XSEDE Role in Science Education

XSEDE Role in Science Education

Steven Gordon has penned an article in IEEE publication Computing in Science & Engineering, elucidating the importance of the XSEDE system in advancing science education. In particular, Gordon highlights the “need for computational science programs that prepare the current and next generation of researchers, educators, and practitioners to effectively utilize digital services in support of science, technology, engineering, and mathematics.”

And he believes that XSEDE can “facilitate the founding and expansion of such programs.”

XSEDE stands for Extreme Science and Engineering Discovery Environment. Funded by the National Science Foundation, this five-year, $121-million project both replaces and expands the NSF TeraGrid.

According to Gordon, XSEDE’s Education and Outreach services have three main goals:

  • Prepare the current and next generation of researchers, educators, and practitioners to effectively utilize digital services in support of science, technology, engineering, and mathematics (STEM).
  • Create a significantly larger and more diverse workforce in STEM.
  • Inculcate the use of digital services as part of the routine practice for advancing scientific discovery.

Gordon serves as the national lead for the XSEDE Education Program. He has been affiliated with Ohio State University since 1975.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This