Steven Chu’s DOE Legacy: Big Science, Grand Challenges and Solyndra

By Tiffany Trader

February 5, 2013

US Energy Secretary Steven Chu oversaw the nation’s energy policy at one of the most politically divisive times in recent history. Last Friday he announced that he would step down from the job. As a big champion of Big Science and its potential to change the country’s economic and environmental landscape – with government aid – many people welcome the change while others are sad to see him go.

Both views are based on one fact: During his four-year term, Chu emphasized the role of science and technology funding in national innovation and competitiveness.

In many people’s view, his greatest achievement was bringing science back to the forefront of energy policy after years of neglect under previous administrations.

To others, his decision to provide $535 million in federal loan guarantees to Solyndra, a solar energy company that later went bankrupt, makes him the poster child for government misspending.

A physics professor, Nobel Prize winner, and Bell Labs investigator, Chu has always been a huge proponent of the transformative power of research.

President Obama praised Chu for his efforts to bring about that transformation. “Over the past four years we have doubled the use of renewable energy, reduced our dependence on foreign oil and put our country on a path to win the global race for clean-energy jobs,” the President said.

Chu pushed the idea that high performance computing should play a key role in overcoming today’s difficult energy challenges. As head of the DOE, he was responsible for some of the most powerful supercomputers in the world. DOE’s Office of Science makes supercomputers available to researchers who use them to simulate everything from the components of a proton to the mechanisms of an exploding star. At a 2010 summit in Washington, D.C., he asserted that the “the DOE strategy should be to make simulation part of everyone’s toolbox.”

In 1997, Chu, along with several Bell Lab colleagues, won the Nobel Prize in Physics for their work on laser cooling. An article at Quartz by Steve LeVine examines how Chu set out to recreate the prolific Bell Laboratory model in Washington using focused funding streams and strategic innovation centers.

Chu’s approach was multi-pronged. First, he created 46 Energy Frontier Research Centers (EFRCs), funded at $2-5 million per year per center for an initial five-year year. These integrated, multi-investigator centers, operated by the DOE Office of Science, target “grand challenge” problems in order to transform “the way we generate, supply, transmit, store, and use energy.”

“The EFRCs neatly fit the Bell mantra,” writes LeVine. “Give a group of talented scientists a specific objective, the freedom to solve it how they see fit, a reasonable sum to work with, and let them go to the task. They might fail spectacularly, but Bell thought that was also how they may succeed.”

Next >>

The second piece of Chu’s plan was to establish five Energy Innovation Hubs, each of which receive up to $125 million in funding over five years. Their mission, according to the DOE, is “to shorten the path from laboratory innovation to technological development, and lead the way toward American competitiveness, economic growth and energy security.” Researchers from different labs are simulating nuclear reactors, developing biofuels from sunlight, designing energy efficient buildings, advancing electrochemical energy storage, and enhancing the supply of critical energy materials.

Chu also oversaw the development of Advanced Research Projects Agency-Energy (ARPA-E), a DOE incubator project that was modeled after the Defense Department’s DARPA program. As Chu explains, “ARPA-E was designed to support high-risk, high reward technology development; to swing for game-changing home runs that can fundamentally transform energy technologies.”

Many people in science and industry have praised the program. In his ARPA-E Summit Keynote, FedEx founder and CEO Fred Smith characterized it as “the best government funding program” he had ever seen.

But not everybody was so happy with Chu’s approach to government/industry collaboration. Republicans launched withering attacks against his handling of the Solyndra loan program after the solar panel maker and four other government-funded energy companies went belly-up on his watch. Some of the comments upon his resignation have not been so kind.

“While many will remember Secretary Chu for his comments about the need to raise gas prices on American consumers and the high grades he publicly bestowed on himself,” said House Oversight and Government Reform Committee Chairman Darrell Issa in a statement, “I found taxpayer losses on projects like Solyndra and the department’s deeply misguided effort to use taxpayer dollars as an investment bank for unproven technologies to be the most problematic aspects of his legacy.”

Chu takes responsibility for these “failures” in his resignation letter, but insists there is a larger context. Innovation, he says, requires risk:

The test for America’s policy makers will be whether they are willing to accept a few failures in exchange for many successes. America’s entrepreneurs and innovators who are leaders in global clean energy race understand that not every risk can – or should – be avoided. Michelangelo said, “The greater danger for most of us lies not in setting our aim too high and falling short; but in setting our aim too low, and achieving our mark.”

It’s true the research beds that Chu established are still in their early years, but he believes that they will give life to the same kind of game-changing advances associated with Bell Labs and other legendary institutions. “Some of those goals have been realized, and we have planted many seeds together,” he said in his resignation letter. “Just as today’s boom in shale gas production was made possible by Department of Energy research from 1978 to 1991, some of [our] most significant work may not be known for decades. What matters is that our country will reap the benefits of what we have started.”

His final legacy will have to wait for those decades to pass and demonstrate whether or not his words prove true.

Related Articles

US Energy Secretary Talks Supercomputing

Steven Chu Announces the Scalable Data Management, Analysis, and Visualization Institute

Three DOE Labs Now Connected with Ultra-High Speed Network

Supercomputing Key to US Leadership

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

HPE Extreme Performance Solutions

“Lunch & Learn” to Explore the Growing Applications of Genomic Analytics

In the digital age of medicine, healthcare providers are rapidly transforming their approach to patient care. Traditional technologies are no longer sufficient to process vast quantities of medical data (including patient histories, treatment plans, diagnostic reports, and more), challenging organizations to invest in a new style of IT to enable faster and higher-quality care. Read more…

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This