UK Creates Massive 200,000-Core ‘HPC Service’

By Tiffany Trader

February 7, 2013

The United Kingdom is rapidly ramping up its HPC capabilities. The nation just launched its third HPC service in the last 12 months, a 200,000-core powerhouse designed to accommodate a wide range of academic and industry workloads.

“Accelerator,” as it’s known, was formed by taking the UK national high performance computing service HECToR, a Cray XE6 platform, and augmenting it with two new machines: an IBM BlueGene/Q and an AMD dual configuration Linux-Windows cluster, nicknamed “Indy,” for its industry-affiliation.

With no fancy middleware or interconnects to bridge them, Accelerator is essentially just three separate machines housed under one roof at the Edinburgh Parallel Computing Centre (EPCC). By combining the resources, they can claim, as the press material states, “the largest on-demand supercomputing resource in Europe.”

Accelerator does indeed surpass the capabilities of other UK services like the OCF’s enCORE service (8,000 cores) and the CORE HPC Service, managed by the University of Cambridge and Imperial College London (22,000 cores).

George Graham, Business Development Manager for EPCC, highlights the specifications of the Accelerator machines: HECToR, the prototype for the service, is a Cray machine with 90,112 cores and a peak output of 827 teraflops. The slightly more-equipped BlueGene/Q sports 98,304 cores and boasts a peak performance of 1.26 petaflops. Indy, in comparison, is a small cluster by today’s standards, with 1,576 cores, but, as Graham emphasizes, its main affinity is not peak performance, but openness and ease-of-use.

Indy supports standard installations of Linux and Windows, which allows it to accommodate a wide variety of industry workloads. In contrast, the Cray and IBM supers are more specialized; they require non-standard Linux distros in order to leverage the proprietary system interconnects.

The majority of Accelerator’s funding comes from EPSRC, a UK government agency, but the Indy cluster was financed out of the Edinburgh University budget and supplied by a local HPC provider, Viglen.

All three machines along with petabyte scale data storage are housed inside EPCC’s purpose-built Advanced Compute Facility. The large site has been active for many years, notes Graham, but has undergone continuous renovations to accommodate HECToR and meet the university’s growing computational demands.

The HPC service can cater to nearly every kind of research: life and earth sciences, pharmaceuticals, energy, and all manner of engineering and product development workloads.

“There is no limit to the application domain capability of our service machines,” says Graham. But he adds that ideal use cases of each system do vary.

As best-in-class leadership supercomputing systems, HECToR and BlueGene are targeted at very high-scale, high-resolution simulation and modeling challenges, for example whole nuclear reactor simulations rather than just one rod.

The ability to perform complete system simulations is a truly defining breakthrough, speaking both to how far we’ve come and the awesome potential that lies ahead. “This is the path to exascale,” observes Graham.

Indy is targeted at slightly more constrained challenges – CFD and FEA are common workloads – but nevertheless it’s a type of solution that can be a transformative digital tool for small-to-medium sized enterprises.

Next >>

The machines can be accessed from around the globe using an Internet connection, but it’s not a cloud in the usual sense, says Graham. He describes the setup as very simple remote access, albeit over secure-connection SSH.

“Users have batch-based queueing access for jobs, however we wrap that with user authentication, security and privacy,” he says. “So it provides for a very healthy service.”

Asked if the machines could be configured in such a way that it would be possible to harness all 200,000-cores, Graham considers the idea before responding. “That’s not there now,” he says, “but it’s not unreasonable to think that our research could enable that kind of setup.”

“At EPCC we undertake a lot of research work,” he continues, “and some of it is in the domain of grid and cloud computing, so it’s not unfeasible to think that we would apply some of the lessons learned in order to provide mechanisms through which our independent architecture can be accessed via a holistic service.”

When it comes to data transfer constraints – a common roadblock to remote computing – Graham notes this is not generally an issue on the input side; the challenge is dealing with the large data files that are generated by the compute. However, he is quick to point out several solutions:

The first is that our systems are at an advanced compute facility that is connected to the UK-wide Super-JANET Network which has high data transfer performance across all UK higher education establishments. Any user that can get to a local campus can benefit from the very high data transfer.

Second, we remove the need for users to pull back the large amount of data that has been generated. What we can offer them is via a facility of on-demand serial queues, or working from login nodes, the ability to do post-processing of the data while the data is in-situ on our systems. So they can do post-processing, visualization, and so on while the data is on our system, which drastically reduce the need for data transfer.

And third, we are talking batch-based, queue-based technology and large data storage; we can always ship the data, load it onto a secure portable disk and courier it between us and the user establishment.

Although the expanded service is new, HECToR has been up and running for five years now. It has quite a wide community of users as it meets the needs of UK and European researchers and also satisfies a body of industry users. From a commercial business-development point of view, Graham notes their resources are predominately focused on UK, but they have had users from the States and across continental Europe. There really are no geographical barriers since the service can be accessed over a standard Internet connection.

It’s apparent from the heightened level of activity over the last few years that the UK government has a real objective in driving HPC to improve UK competitiveness, and these types of public-private collaborations are part of their strategy. They’re investing millions of pounds and they expect to see a return on investment in terms of innovation as well as real economic stimulus. As industry users pay to rent time on these big systems they are in effect underwriting the cost of the systems. That’s true, says Graham, but he returns to the collaborative nature of the arrangement: “Think of it as a three-way partnership between government and industry and the higher-education establishments,” he says.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Inspur Establishes Artificial Intelligence (AI) Department

Google Showcases 2017 AI Research Highlights

January 23, 2018

Looking for a good snapshot of the state of AI research? Cloud giant Google recently reviewed its 2017 AI research and application highlights in a two-part blog. While hardly comprehensive, it’s a worthwhile, fast read Read more…

By John Russell

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This