UK Creates Massive 200,000-Core ‘HPC Service’

By Tiffany Trader

February 7, 2013

The United Kingdom is rapidly ramping up its HPC capabilities. The nation just launched its third HPC service in the last 12 months, a 200,000-core powerhouse designed to accommodate a wide range of academic and industry workloads.

“Accelerator,” as it’s known, was formed by taking the UK national high performance computing service HECToR, a Cray XE6 platform, and augmenting it with two new machines: an IBM BlueGene/Q and an AMD dual configuration Linux-Windows cluster, nicknamed “Indy,” for its industry-affiliation.

With no fancy middleware or interconnects to bridge them, Accelerator is essentially just three separate machines housed under one roof at the Edinburgh Parallel Computing Centre (EPCC). By combining the resources, they can claim, as the press material states, “the largest on-demand supercomputing resource in Europe.”

Accelerator does indeed surpass the capabilities of other UK services like the OCF’s enCORE service (8,000 cores) and the CORE HPC Service, managed by the University of Cambridge and Imperial College London (22,000 cores).

George Graham, Business Development Manager for EPCC, highlights the specifications of the Accelerator machines: HECToR, the prototype for the service, is a Cray machine with 90,112 cores and a peak output of 827 teraflops. The slightly more-equipped BlueGene/Q sports 98,304 cores and boasts a peak performance of 1.26 petaflops. Indy, in comparison, is a small cluster by today’s standards, with 1,576 cores, but, as Graham emphasizes, its main affinity is not peak performance, but openness and ease-of-use.

Indy supports standard installations of Linux and Windows, which allows it to accommodate a wide variety of industry workloads. In contrast, the Cray and IBM supers are more specialized; they require non-standard Linux distros in order to leverage the proprietary system interconnects.

The majority of Accelerator’s funding comes from EPSRC, a UK government agency, but the Indy cluster was financed out of the Edinburgh University budget and supplied by a local HPC provider, Viglen.

All three machines along with petabyte scale data storage are housed inside EPCC’s purpose-built Advanced Compute Facility. The large site has been active for many years, notes Graham, but has undergone continuous renovations to accommodate HECToR and meet the university’s growing computational demands.

The HPC service can cater to nearly every kind of research: life and earth sciences, pharmaceuticals, energy, and all manner of engineering and product development workloads.

“There is no limit to the application domain capability of our service machines,” says Graham. But he adds that ideal use cases of each system do vary.

As best-in-class leadership supercomputing systems, HECToR and BlueGene are targeted at very high-scale, high-resolution simulation and modeling challenges, for example whole nuclear reactor simulations rather than just one rod.

The ability to perform complete system simulations is a truly defining breakthrough, speaking both to how far we’ve come and the awesome potential that lies ahead. “This is the path to exascale,” observes Graham.

Indy is targeted at slightly more constrained challenges – CFD and FEA are common workloads – but nevertheless it’s a type of solution that can be a transformative digital tool for small-to-medium sized enterprises.

Next >>

The machines can be accessed from around the globe using an Internet connection, but it’s not a cloud in the usual sense, says Graham. He describes the setup as very simple remote access, albeit over secure-connection SSH.

“Users have batch-based queueing access for jobs, however we wrap that with user authentication, security and privacy,” he says. “So it provides for a very healthy service.”

Asked if the machines could be configured in such a way that it would be possible to harness all 200,000-cores, Graham considers the idea before responding. “That’s not there now,” he says, “but it’s not unreasonable to think that our research could enable that kind of setup.”

“At EPCC we undertake a lot of research work,” he continues, “and some of it is in the domain of grid and cloud computing, so it’s not unfeasible to think that we would apply some of the lessons learned in order to provide mechanisms through which our independent architecture can be accessed via a holistic service.”

When it comes to data transfer constraints – a common roadblock to remote computing – Graham notes this is not generally an issue on the input side; the challenge is dealing with the large data files that are generated by the compute. However, he is quick to point out several solutions:

The first is that our systems are at an advanced compute facility that is connected to the UK-wide Super-JANET Network which has high data transfer performance across all UK higher education establishments. Any user that can get to a local campus can benefit from the very high data transfer.

Second, we remove the need for users to pull back the large amount of data that has been generated. What we can offer them is via a facility of on-demand serial queues, or working from login nodes, the ability to do post-processing of the data while the data is in-situ on our systems. So they can do post-processing, visualization, and so on while the data is on our system, which drastically reduce the need for data transfer.

And third, we are talking batch-based, queue-based technology and large data storage; we can always ship the data, load it onto a secure portable disk and courier it between us and the user establishment.

Although the expanded service is new, HECToR has been up and running for five years now. It has quite a wide community of users as it meets the needs of UK and European researchers and also satisfies a body of industry users. From a commercial business-development point of view, Graham notes their resources are predominately focused on UK, but they have had users from the States and across continental Europe. There really are no geographical barriers since the service can be accessed over a standard Internet connection.

It’s apparent from the heightened level of activity over the last few years that the UK government has a real objective in driving HPC to improve UK competitiveness, and these types of public-private collaborations are part of their strategy. They’re investing millions of pounds and they expect to see a return on investment in terms of innovation as well as real economic stimulus. As industry users pay to rent time on these big systems they are in effect underwriting the cost of the systems. That’s true, says Graham, but he returns to the collaborative nature of the arrangement: “Think of it as a three-way partnership between government and industry and the higher-education establishments,” he says.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This