A Sterling Future For HPC

By Nicole Hemsoth

February 11, 2013

For the past decade, keynote speakers at the International Supercomputing Conference (ISC) have examined the major accomplishments in HPC during the preceding year. This time the talk is more ambitious. At ISC ’13 in Leipzig, Germany in June, Thomas Sterling will deliver a keynote that examines the HPC accomplishments over the last decade. He plans to reveal “the true achievement of our field.”

You already know Sterling, of course. He’s famous as the “father of Beowulf,” the commodity computing cluster he and NASA Goddard colleague Donald Becker pioneered in 1994, for which they won a Gordon Bell Prize.

He’s now Professor of Informatics and Computing at the Indiana University School of Informatics and Computing, leading a team conducting research associated with the ParalleX advanced execution model for extreme scale computing. The goal: to develop a new model of computation that will enable a new generation of extreme scale computing systems and applications.

He’s also Chief Scientist and Associate Director of the PTI Center for Research in Extreme Scale Technologies (CREST), Adjunct Professor at Louisiana State University, and CRSI Fellow at Sandia National Laboratories. He has co-authored six books and holds six patents. To top it off, he’s one of HPCwire’s People to Watch for 2013!

His speech will examine the innovations in technology and architectures in HPC, as well as their contributions to science and other fields. He’ll also offer a collection of predictions for the next decade from key HPC leaders.

In anticipation of that talk, HPCwire asked Dr. Sterling to make a few predictions of his own.

HPCwire: It seems like the push toward exascale has lost some momentum over the last year. Do you think exascale will slip into the next decade?

Sterling: This is a complicated issue, but my view is that, if anything, momentum towards exascale in the US is building, not waning. There are two tracks to exascale, both being led by DOE in the US.

NNSA [National Nuclear Security Administration] is driving the incremental track. That is an attempt to extend conventional practices, both in architecture and programming, to deploy an exascale version of what we have today. This is prudent, responsible, and low-risk. It will support important mission-critical workloads, and will present a ready, if not seamless, migration path for legacy codes. However, it’s likely to be limited in applicability, scalability, and efficiency for many problems.

OS/ASCR is guiding the advanced track. This approach is to create innovations in architecture, system software, and programming models and methods. It could achieve exascale-era computing systems that are truly general-purpose, usable, reliable, and cost-effective (in terms of both operations and power.) It’s possible that we’ll even shift paradigms to a new execution model.

NNSA is likely to deliver its incremental platform to the national labs sometime between 2018 and 2020. R&D timeline projections suggest an advanced-class system is likely by 2022 or shortly after.

Still, the process of a congressionally-validated plan is complex. Its formulation is well along and is being refined, but there are other issues related to how it moves through the obscure (at least to mere mortals such as myself) layers of authorization.

The apparent path for supercomputing is now entering a multifaceted period. We have matured, I think, beyond the adolescent obsession of the next Linpack number. The trends leading to exascale should be measured in terms of progress toward unprecedented accomplishments in science, engineering, societal, commercial, and defense-related goals. I think we are sustaining a mid-course correction that is placing us on the new trend lines: the ones that actually matter.

HPCwire: Will another nation beat the US to the exascale milestone? Which one has the best shot?

Sterling: It is possible of course that another nation will beat the US to the exascale milestone.

However, there is an unstated assumption that “the exascale milestone” is 1 exaflops Rmax [maximal LINPACK performance]. Such systems don’t have to emphasize networking capability or even memory capacity (which, in combination, are the most expensive part of the system when balanced) to gain high marks. Any nation that wants the stature of being the first exascale system by this definition can probably do so in five years or slightly more, if they are willing to pay for it, by deploying a stunt machine.

Who may get to 1 exaflops Rmax first? History shows that, if not the US, it is likely to be Japan or China, but otherwise I have no deep insight. The EU is taking on new leadership in hardware and is expanding its energies in software infrastructure. Japan continues to extend its own advances with, for example, Kei and Tsubame-2. The Chinese have announced Tianhe-2, to exceed 100 petaflops by 2015.

But the US, guided by DOE programs, is pursuing opportunities with radically different approaches for true general-purpose exascale computation. The X-stack program begun in September 2012, for example, is getting dramatic improvements to efficiency, scalability, generality, and programmability, and is aggressively pursuing innovations to improve power consumption and reliability. If the milestone is general purpose exascale computing, then I think the US is in a compelling leadership position through the DOE partnership of Thuc Huang and Bill Harrod.

Still, I wish we had a science accomplishments benchmark – something like the X-prize. Perhaps some end-game computational achievement, like proving the process producing gamma ray bursts (including neutrinos); or some microbiology challenge involving viruses; or perhaps demonstrating climate change at a level that is provably predictive (and yes, I know it’s inherently chaotic.) We need something that matters. We need to stop playing the horses and ensure that we can pull the plow.

Next >>

HPCwire: With the emergence of big data analytics in HPC, and certainly elsewhere, as a growing application area, is there less of a reason to build systems that are just optimized for FLOPS?

Sterling: The answer, of course, is yes. But we don’t have to invoke big data to justify that. Any number of studies of large, multi-scale, multi-physics applications with short transient time constants and long times to steady state, show the relatively high importance of memory access patterns and system wide data movement.

Relatively speaking, floating point capacity is easy to achieve compared to effective memory access bandwidth or low overhead control of complex parallel execution. In the long term, we need to bridge the gap between data that computers treat as actionable, and knowledge that humans act upon. However this is achieved, it will involve meta-data more like that of advanced graph analytic problems and less like DGEMM.

The problem is cost and the dominance by some of Linpack. It is less expensive to build a high Rmax system with cheap flops than to build a balanced architecture of large main memories and high bandwidth, low-latency networks. Until we define a new standard of quality, we are likely to drift back in to our comfort zone and go for the flops.

HPCwire: Given that scientific computing will need both physics simulations and analytics going forward, should we be designing different types of machines for each of these application areas, or is there enough similarity between the two that a single architecture can suffice?

Sterling: For each application algorithm, there may be an optimal balance of computation, memory, and communication resources and structures. Examples like Anton, and somewhat more-generic GPU components, certainly demonstrate exceptional capabilities for specific workloads and flows.

It is tempting to prescribe particular machine designs for specific algorithms. Alternatively, there have been proposals to configure heterogeneous systems with ensembles of highly specialized functional units, any class of which may be employed for a given problem, allowing others to lie fallow. The greatest value of such optimizations may ultimately be in the area of energy, which would focus primarily on data movement.

Such structural variations may ultimately be important when Moore’s Law does flatten out beyond a nanometer of feature size. The greatest challenge is to satisfy not any single application, but the mix of applications that must be supported by any truly large-scale deployed system. My inclination is that at the system level we will generally shoot for broadly general-purpose, while at the local level we will choose to use or exclude specialized functional units based on expectations of workloads to be supported at individual sites of deployment. The memory wall is still the major challenge for many classes of application, both numeric-intensive and big data. Improvements in this aspect of system architecture will significantly enhance performance for both genres of computation.

Next >>

HPCwire: To the public, much of the work of supercomputing seems esoteric, many of the applications incomprehensible. Can we point to the results of work done by supercomputers that connects to the concerns of people outside the HPC community, that show it has made a difference in their lives?

Sterling: It has been said that supercomputing is the third pillar of human exploration and understanding, following empiricism (from the dawn of humanity) and theory (in recent centuries, with some priceless gems more than two millennia ago from people like Euclid and Eratosthenes). It provides a new window on to the universe – mega, macro, and micro. It allows us to explain the past, control the present and, in certain restricted but important cases, predict the future.

Challenges to the US and world societies in the 21st century require solutions to shared scientific and engineering problems that will affect this and the next two generations if quality of life is to improve and the disparities in access to life-enabling resources are to be mitigated.

One example: There is an interrelationship between determining the possible effect of anthropogenic chemicals on global climate change, and the future availability of safe, healthy, low cost energy. Both depend on bringing the highest capability computing to bear on these problems. Climate modeling must operate at significantly greater resolution in space, time, chemistry and physical phenomenology for any certainty about the degree of change that is of human origin. Should it prove to be, as many expect, that the burning of fossil fuels is a principal contributing factor aggravating global warming, then we will need to apply supercomputing to the design and operation of controlled-fusion reactors (e.g., ITER.) This could be the source of abundant, safe, and (eventually) low-cost electrical power that will ultimately save human civilization.

Supercomputers are also exploring the chemistry, processes, and materials for mobile energy storage in order to dramatically extend the travel range of electric vehicles.

Finally, treating the physical human condition as a system-engineering and simulation problem demands exascale computing. That may provide the ultimate understanding of diseases and their treatments, whether through drugs, organ regeneration, or supplementary replacement devices.

And if these driving issues are beyond the ken of the mainstream citizenry, certainly access to information of all forms through myriad search engines, on-line purchasing, interaction with friends, families, and social groups are highly visible on a daily basis. Entertainment such as on-demand movies and interactive multi-player gaming employ computing resources at the same scale as high performance computing systems used for technical computing. Then there is the less visible but pervasive contributions of high performance computing in such areas as national security, air traffic control, weather forecasting, and many other applications that silently serve all of use on a daily basis.

It is not clear that our community has adequately conveyed the importance and accomplishments of the field of high performance computing to the broad public in a way that they can understand and appreciate. When I consider how other fields successfully expose our citizenry to their foundation ideas, I realize that they play a role in K-12 education.

Children learn about telescopes, microscopes, and even particle accelerators. But they don’t learn about supercomputers. The concept of simulation is something that a student may not encounter until college, and then only in the sciences and engineering disciplines. I believe that we need to inculcate the process of teaching at all levels of our young people so that everyone in the U.S. is routinely exposed to supercomputing as one of the few important means of advancing goals in science and technology in the 21st century.

HPCwire: What do you think 2013 will bring to the world of HPC? Any predictions you care to make?

Sterling: 2013 may prove to be the pivotal year for HPC, although I may be being a bit impatient and it will turn out that history will look back and decide that 2014 was the delineating point. Here are a few things to watch:

MPI-3 – A major overhaul of MPI has been completed with the release of the MPI-3 specification. This year we will see if the changes incorporated will get traction and will extend the utility of the highly successful predecessor programming model to areas that were not well-served before.

Lightweight Core Architectures – Many organizations, including the world’s largest microprocessor manufacturing company (Intel), are guessing that a new generation of microprocessor architecture will be required to fully realize the promise of exascale computing. MIC (Xeon Phi) represents a new direction in processor core design. ARM is another path being pursued by Russia, EU and, in the US, Nvidia to find an improved balance of processing logic.

3-D Die Stacking – the packaging of multiple memory and logic dies in a single stack may dramatically increase parts density while significantly increasing local bandwidth and reducing latencies, as well as reducing energy consumption.

Runtime systems are emerging as an alternative to static control for resource management and task scheduling. With their overhead costs, runtime systems may not prove optimal for all workload classes. But early experiments for multi-scale, multi-physics problems have demonstrated promising results for efficiency and scalability. More work is required and it is premature to assume this as a final solution. This coming year may provide sufficient results to validate or refute this approach; an important result if achieved.

Lightweight Kernel OS – new work in operating systems this year may lead to environments capable of providing necessary capability and services while delivering vastly superior efficiency and scalability. Early examples like Catamount and CNK are informing new developments conducted currently and potentially in the future under new DOE research programs.

 

Related Articles:

HPC Programming in the Age of Multicore: One Man’s View

UK Creates Massive 200,000-Core ‘HPC Service’

Experts Discuss the Future of Supercomputers

Waiting for Exascale

DOE to Field Pre-Exascale Supercomputers Within Four Years

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

NSF Approves Bridges Phase 2 Upgrade for Broader Research Use

January 12, 2017

The recently completed phase 2 upgrade of the Bridges supercomputer at the Pittsburgh Supercomputing Center (PSC) has been approved by the National Science Foundation (NSF) making it now available for research allocations to the national scientific community, according to an announcement posted this week on the XSEDE web site. Read more…

By John Russell

Clemson Software Optimizes Big Data Transfers

January 11, 2017

Data-intensive science is not a new phenomenon as the high-energy physics and astrophysics communities can certainly attest, but today more and more scientists are facing steep data and throughput challenges fueled by soaring data volumes and the demands of global-scale collaboration. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

FPGA-Based Genome Processor Bundles Storage

January 6, 2017

Bio-processor developer Edico Genome is collaborating with storage specialist Dell EMC to bundle computing and storage for analyzing gene-sequencing data. Read more…

By George Leopold

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Fast Rewind: 2016 Was a Wild Ride for HPC

December 23, 2016

Some years quietly sneak by – 2016 not so much. It’s safe to say there are always forces reshaping the HPC landscape but this year’s bunch seemed like a noisy lot. Among the noisemakers: TaihuLight, DGX-1/Pascal, Dell EMC & HPE-SGI et al., KNL to market, OPA-IB chest thumping, Fujitsu-ARM, new U.S. President-elect, BREXIT, JR’s Intel Exit, Exascale (whatever that means now), NCSA@30, whither NSCI, Deep Learning mania, HPC identity crisis…You get the picture. Read more…

By John Russell

AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country's premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off. Read more…

By Linda Barney

Addison Snell: The ‘Wild West’ of HPC Disaggregation

December 16, 2016

We caught up with Addison Snell, CEO of HPC industry watcher Intersect360, at SC16 last month, and Snell had his expected, extensive list of insights into trends driving advanced-scale technology in both the commercial and research sectors. Read more…

By Doug Black

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Deep Learning Paves Way for Better Diagnostics

September 19, 2016

Stanford researchers are leveraging GPU-based machines in the Amazon EC2 cloud to run deep learning workloads with the goal of improving diagnostics for a chronic eye disease, called diabetic retinopathy. The disease is a complication of diabetes that can lead to blindness if blood sugar is poorly controlled. It affects about 45 percent of diabetics and 100 million people worldwide, many in developing nations. Read more…

By Tiffany Trader

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This