The Week in HPC Research

By Nicole Hemsoth

February 14, 2013

The top research stories of the week have been hand-selected from major science centers, prominent journals and leading conference proceedings. Here’s another diverse set of items, including whole brain simulation; a look at High Performance Linpack; the coming GPGPU cloud paradigm; heterogenous GPU programming; and a comparison of accelerator-based servers.

Brain Simulation Project

The Human Brain Project, one of the most ambitious projects of its kind, has just been awarded half-a-million Euros over a 10-year timeframe. The European Commission funded the innovative program as part of its Future and Emerging Technologies (FET) flagship program. Led by Henry Markram, a neuroscientist at the Swiss Federal Institute of Technology in Lausanne, the project aims to reconstruct the brain piece-by-piece, using cutting-edge supercomputing resources.

According to the announcement:

As a result of this initiative, in neuroscience and neuroinformatics the brain simulation will collect and integrate experimental data, identifying and filling gaps in our knowledge. In medicine, the project’s results will facilitate better diagnosis, combined with disease and drug simulation. In computing, new techniques of interactive supercomputing, driven by the needs of brain simulation, will impact a range of industries, while devices and systems, modelled after the brain, will overcome fundamental limits on the energy-efficiency, reliability and programmability of current technologies, clearing the road for systems with brain-like intelligence.

The “Human Brain Project” is on track to become the world’s largest experimental facility for developing the most detailed model of the brain. The research will increase our understanding of how the human brain works, which has countless implications for technology and medicine, from personalized medical treatments to artificial intelligence breakthroughs.

Researchers are divided over the news. Detractors say it’s an impossible endeavor at our current stage of computational development to model the brain’s 86 billion neurons. To make it really interesting will mean capturing the brain’s actual creative potential and intelligence, otherwise it will just be a big computer.

Next >> An Investigation into High Performance Linpack

An Investigation into High Performance Linpack

A research item in the Proceedings of 2012 2nd IEEE International Conference on Parallel Distributed and Grid Computing, which took place Dec. 6-8, 2012, presents an analysis of process distribution in HPC cluster using High Performance Linpack.

The authors, a group of computer scientists from the Raja Ramanna Centre for Advanced Technology in Indore, India Computing acknowledge the fact that scientific endeavors increasingly rely on parallel programming techniques running on High Performance Computing Clusters (HPCC).

When it comes to measuring cluster performance, there are multiple factors to take into account. “Memory, interconnect bandwidth, number of cores per processor/ node and job complexity are the major parameters which affect and govern the peak computing power delivered by HPCC,” they write.

The paper describes the researchers’ experiments with High Performance Linpack (HPL). They use the benchmark to analyze the effect of job distribution among single processors versus distributed processors. They’re also investigating the effect of the system interconnect on job performance. The work centers on an InfiniBand-connected HPC cluster.

Next >> the GPGPU Cloud Paradigm

The GPGPU Cloud Paradigm

The increasing prevalence of hybrid HPC systems that use coprocessors like GPUs to improve performance has implications to HPC cloud. In a new research paper [PDF], a team of computer scientists from the College of Computer Science and Technology at Jilin University in Changchun, China, explores the idea of GPGPU cloud as a paradigm for general purpose computing. Their work appears in the February 2013 issue of the Tsinghua Science and Technology Journal.

The authors start with the premise that the “Kepler General Purpose GPU (GPGPU) architecture was developed to directly support GPU virtualization and make GPGPU cloud computing more broadly applicable by providing general purpose computing capability in the form of on-demand virtual resources.”

To test their theories, they developed a baseline GPGPU cloud system outfitted with Kepler GPUs. The system is comprised of a cloud layer, a server layer, and a GPGPU layer, and the paper further describes “the hardware features, task features, scheduling mechanism, and execution mechanism of each layer.” The work aims to uncover hardware potential while also improving task performance. In identifying the advantages to general-purpose computing on a GPGPU cloud, the authors show themselves to be on the forefront of an emerging paradigm.

Next >> Heterogeneous Computing on GPU Clusters

Heterogeneous Computing on GPU Clusters

A group of scientists from the University of Minnesota and University of Colorado Boulder have contributed to a recently-published book, GPU Solutions to Multi-scale Problems in Science and Engineering. Their chapter, titled High Throughput Heterogeneous Computing and Interactive Visualization on a Desktop Supercomputer, examines some of the computational improvements that have resulted from the GPU accelerator movement. Their test system, a “desktop supercomputer,” was constructed for less than $2,500 using commodity parts, including a Tesla C1060 card and a GeForce GTX 295 card. The GPU cluster runs on Linux, and employs CUDA, MPI and other software as needed.

The authors make some interesting observations, including the following:

MPI is used not only for distributing and/or transferring the computing loads among the GPU devices, but also for controlling the process of visualization. Several applications of heterogeneous computing have been successfully run on this desktop. Calculation of long-ranged forces in the n-body problem with fast multi-pole method can consume more than 85 % of the cycles and generate 480 GFLOPS of throughput. Mixed programming of CUDA-based C and Matlab has facilitated interactive visualization during simulations.

They explain that what sets their work apart from other published research is their use of multiple GPU devices on one desktop, employed by multiple users for various types of applications at the same time. They state that they have extended GPU acceleration from the single program multiple data paradigm to the multiple program multiple data paradigm, and claim “test runs have shown that running multiple applications on one GPU device or running one application across multiple GPU devices can be done as conveniently as on traditional CPUs.”

Next >> Accelerators Compared for Energy Efficiency

Accelerators Compared for Energy Efficiency

The entire book, GPU Solutions to Multi-scale Problems in Science and Engineering, is quite fascinating. Another chapter written by University of Houston’s Lennart Johnsson explores the energy efficiency of accelerated HPC servers.

Johnsson traces the evolution of mass market, specialized processors, including the Cell Broadband Engine (CBE) and graphics processors. She notes that GPUs, in particular, have received significant attention. The addition of hardware support for double-precision floating-point arithmetic, introduced three years ago, was key to this signification uptick in adoption, as was the recent support of Error Correcting Code.

To analyze the feasibility of deploying accelerated clusters, PRACE (the Partnership for Advanced Computing in Europe) performed a study, investigating three types of accelerators, the CBE, GPUs and ClearSpeed. The study assessed several metrics, including performance, efficiency, power efficiency for double-precision arithmetic and programmer productivity.

In this chapter, titled “Efficiency, Energy Efficiency and Programming of Accelerated HPC Servers: Highlights of PRACE Studies,” Johnsson presents and analyzes some of the results from those experiments. She observes that the “GPU performed surprisingly significantly better than the CPU on the sparse matrix-vector multiplication on which the ClearSpeed performed surprisingly poorly. For matrix-multiplication, HPL and FFT the ClearSpeed accelerator was by far the most energy efficient device.”

Next >> HPC Award Winners

Inaugural HPC Award Winners

The Department of Energy’s National Energy Research Scientific Computing Center (NERSC) unveiled the winners of their inaugural High Performance Computing (HPC) Achievement Awards. The announcement was made at the annual NERSC User Group meeting at the Lawrence Berkeley National Laboratory (Berkeley Lab).

All NERSC users, the awardees were selected for their innovative use of HPC resources to help solve major computational or humanitarian challenges. Two early career awards were also presented.

NERSC Director Sudip Dosanjh stated that “High performance computing is changing how science is being done, and facilitating breakthroughs that would have been impossible a decade ago. The 2013 NERSC Achievement Award winners highlight some of the ways this trend is expanding our fundamental understanding of science, and how we can use this knowledge to benefit humanity.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This