The Week in HPC Research

By Nicole Hemsoth

February 14, 2013

The top research stories of the week have been hand-selected from major science centers, prominent journals and leading conference proceedings. Here’s another diverse set of items, including whole brain simulation; a look at High Performance Linpack; the coming GPGPU cloud paradigm; heterogenous GPU programming; and a comparison of accelerator-based servers.

Brain Simulation Project

The Human Brain Project, one of the most ambitious projects of its kind, has just been awarded half-a-million Euros over a 10-year timeframe. The European Commission funded the innovative program as part of its Future and Emerging Technologies (FET) flagship program. Led by Henry Markram, a neuroscientist at the Swiss Federal Institute of Technology in Lausanne, the project aims to reconstruct the brain piece-by-piece, using cutting-edge supercomputing resources.

According to the announcement:

As a result of this initiative, in neuroscience and neuroinformatics the brain simulation will collect and integrate experimental data, identifying and filling gaps in our knowledge. In medicine, the project’s results will facilitate better diagnosis, combined with disease and drug simulation. In computing, new techniques of interactive supercomputing, driven by the needs of brain simulation, will impact a range of industries, while devices and systems, modelled after the brain, will overcome fundamental limits on the energy-efficiency, reliability and programmability of current technologies, clearing the road for systems with brain-like intelligence.

The “Human Brain Project” is on track to become the world’s largest experimental facility for developing the most detailed model of the brain. The research will increase our understanding of how the human brain works, which has countless implications for technology and medicine, from personalized medical treatments to artificial intelligence breakthroughs.

Researchers are divided over the news. Detractors say it’s an impossible endeavor at our current stage of computational development to model the brain’s 86 billion neurons. To make it really interesting will mean capturing the brain’s actual creative potential and intelligence, otherwise it will just be a big computer.

Next >> An Investigation into High Performance Linpack

An Investigation into High Performance Linpack

A research item in the Proceedings of 2012 2nd IEEE International Conference on Parallel Distributed and Grid Computing, which took place Dec. 6-8, 2012, presents an analysis of process distribution in HPC cluster using High Performance Linpack.

The authors, a group of computer scientists from the Raja Ramanna Centre for Advanced Technology in Indore, India Computing acknowledge the fact that scientific endeavors increasingly rely on parallel programming techniques running on High Performance Computing Clusters (HPCC).

When it comes to measuring cluster performance, there are multiple factors to take into account. “Memory, interconnect bandwidth, number of cores per processor/ node and job complexity are the major parameters which affect and govern the peak computing power delivered by HPCC,” they write.

The paper describes the researchers’ experiments with High Performance Linpack (HPL). They use the benchmark to analyze the effect of job distribution among single processors versus distributed processors. They’re also investigating the effect of the system interconnect on job performance. The work centers on an InfiniBand-connected HPC cluster.

Next >> the GPGPU Cloud Paradigm

The GPGPU Cloud Paradigm

The increasing prevalence of hybrid HPC systems that use coprocessors like GPUs to improve performance has implications to HPC cloud. In a new research paper [PDF], a team of computer scientists from the College of Computer Science and Technology at Jilin University in Changchun, China, explores the idea of GPGPU cloud as a paradigm for general purpose computing. Their work appears in the February 2013 issue of the Tsinghua Science and Technology Journal.

The authors start with the premise that the “Kepler General Purpose GPU (GPGPU) architecture was developed to directly support GPU virtualization and make GPGPU cloud computing more broadly applicable by providing general purpose computing capability in the form of on-demand virtual resources.”

To test their theories, they developed a baseline GPGPU cloud system outfitted with Kepler GPUs. The system is comprised of a cloud layer, a server layer, and a GPGPU layer, and the paper further describes “the hardware features, task features, scheduling mechanism, and execution mechanism of each layer.” The work aims to uncover hardware potential while also improving task performance. In identifying the advantages to general-purpose computing on a GPGPU cloud, the authors show themselves to be on the forefront of an emerging paradigm.

Next >> Heterogeneous Computing on GPU Clusters

Heterogeneous Computing on GPU Clusters

A group of scientists from the University of Minnesota and University of Colorado Boulder have contributed to a recently-published book, GPU Solutions to Multi-scale Problems in Science and Engineering. Their chapter, titled High Throughput Heterogeneous Computing and Interactive Visualization on a Desktop Supercomputer, examines some of the computational improvements that have resulted from the GPU accelerator movement. Their test system, a “desktop supercomputer,” was constructed for less than $2,500 using commodity parts, including a Tesla C1060 card and a GeForce GTX 295 card. The GPU cluster runs on Linux, and employs CUDA, MPI and other software as needed.

The authors make some interesting observations, including the following:

MPI is used not only for distributing and/or transferring the computing loads among the GPU devices, but also for controlling the process of visualization. Several applications of heterogeneous computing have been successfully run on this desktop. Calculation of long-ranged forces in the n-body problem with fast multi-pole method can consume more than 85 % of the cycles and generate 480 GFLOPS of throughput. Mixed programming of CUDA-based C and Matlab has facilitated interactive visualization during simulations.

They explain that what sets their work apart from other published research is their use of multiple GPU devices on one desktop, employed by multiple users for various types of applications at the same time. They state that they have extended GPU acceleration from the single program multiple data paradigm to the multiple program multiple data paradigm, and claim “test runs have shown that running multiple applications on one GPU device or running one application across multiple GPU devices can be done as conveniently as on traditional CPUs.”

Next >> Accelerators Compared for Energy Efficiency

Accelerators Compared for Energy Efficiency

The entire book, GPU Solutions to Multi-scale Problems in Science and Engineering, is quite fascinating. Another chapter written by University of Houston’s Lennart Johnsson explores the energy efficiency of accelerated HPC servers.

Johnsson traces the evolution of mass market, specialized processors, including the Cell Broadband Engine (CBE) and graphics processors. She notes that GPUs, in particular, have received significant attention. The addition of hardware support for double-precision floating-point arithmetic, introduced three years ago, was key to this signification uptick in adoption, as was the recent support of Error Correcting Code.

To analyze the feasibility of deploying accelerated clusters, PRACE (the Partnership for Advanced Computing in Europe) performed a study, investigating three types of accelerators, the CBE, GPUs and ClearSpeed. The study assessed several metrics, including performance, efficiency, power efficiency for double-precision arithmetic and programmer productivity.

In this chapter, titled “Efficiency, Energy Efficiency and Programming of Accelerated HPC Servers: Highlights of PRACE Studies,” Johnsson presents and analyzes some of the results from those experiments. She observes that the “GPU performed surprisingly significantly better than the CPU on the sparse matrix-vector multiplication on which the ClearSpeed performed surprisingly poorly. For matrix-multiplication, HPL and FFT the ClearSpeed accelerator was by far the most energy efficient device.”

Next >> HPC Award Winners

Inaugural HPC Award Winners

The Department of Energy’s National Energy Research Scientific Computing Center (NERSC) unveiled the winners of their inaugural High Performance Computing (HPC) Achievement Awards. The announcement was made at the annual NERSC User Group meeting at the Lawrence Berkeley National Laboratory (Berkeley Lab).

All NERSC users, the awardees were selected for their innovative use of HPC resources to help solve major computational or humanitarian challenges. Two early career awards were also presented.

NERSC Director Sudip Dosanjh stated that “High performance computing is changing how science is being done, and facilitating breakthroughs that would have been impossible a decade ago. The 2013 NERSC Achievement Award winners highlight some of the ways this trend is expanding our fundamental understanding of science, and how we can use this knowledge to benefit humanity.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This