The Week in HPC Research

By Nicole Hemsoth

February 14, 2013

The top research stories of the week have been hand-selected from major science centers, prominent journals and leading conference proceedings. Here’s another diverse set of items, including whole brain simulation; a look at High Performance Linpack; the coming GPGPU cloud paradigm; heterogenous GPU programming; and a comparison of accelerator-based servers.

Brain Simulation Project

The Human Brain Project, one of the most ambitious projects of its kind, has just been awarded half-a-million Euros over a 10-year timeframe. The European Commission funded the innovative program as part of its Future and Emerging Technologies (FET) flagship program. Led by Henry Markram, a neuroscientist at the Swiss Federal Institute of Technology in Lausanne, the project aims to reconstruct the brain piece-by-piece, using cutting-edge supercomputing resources.

According to the announcement:

As a result of this initiative, in neuroscience and neuroinformatics the brain simulation will collect and integrate experimental data, identifying and filling gaps in our knowledge. In medicine, the project’s results will facilitate better diagnosis, combined with disease and drug simulation. In computing, new techniques of interactive supercomputing, driven by the needs of brain simulation, will impact a range of industries, while devices and systems, modelled after the brain, will overcome fundamental limits on the energy-efficiency, reliability and programmability of current technologies, clearing the road for systems with brain-like intelligence.

The “Human Brain Project” is on track to become the world’s largest experimental facility for developing the most detailed model of the brain. The research will increase our understanding of how the human brain works, which has countless implications for technology and medicine, from personalized medical treatments to artificial intelligence breakthroughs.

Researchers are divided over the news. Detractors say it’s an impossible endeavor at our current stage of computational development to model the brain’s 86 billion neurons. To make it really interesting will mean capturing the brain’s actual creative potential and intelligence, otherwise it will just be a big computer.

Next >> An Investigation into High Performance Linpack

An Investigation into High Performance Linpack

A research item in the Proceedings of 2012 2nd IEEE International Conference on Parallel Distributed and Grid Computing, which took place Dec. 6-8, 2012, presents an analysis of process distribution in HPC cluster using High Performance Linpack.

The authors, a group of computer scientists from the Raja Ramanna Centre for Advanced Technology in Indore, India Computing acknowledge the fact that scientific endeavors increasingly rely on parallel programming techniques running on High Performance Computing Clusters (HPCC).

When it comes to measuring cluster performance, there are multiple factors to take into account. “Memory, interconnect bandwidth, number of cores per processor/ node and job complexity are the major parameters which affect and govern the peak computing power delivered by HPCC,” they write.

The paper describes the researchers’ experiments with High Performance Linpack (HPL). They use the benchmark to analyze the effect of job distribution among single processors versus distributed processors. They’re also investigating the effect of the system interconnect on job performance. The work centers on an InfiniBand-connected HPC cluster.

Next >> the GPGPU Cloud Paradigm

The GPGPU Cloud Paradigm

The increasing prevalence of hybrid HPC systems that use coprocessors like GPUs to improve performance has implications to HPC cloud. In a new research paper [PDF], a team of computer scientists from the College of Computer Science and Technology at Jilin University in Changchun, China, explores the idea of GPGPU cloud as a paradigm for general purpose computing. Their work appears in the February 2013 issue of the Tsinghua Science and Technology Journal.

The authors start with the premise that the “Kepler General Purpose GPU (GPGPU) architecture was developed to directly support GPU virtualization and make GPGPU cloud computing more broadly applicable by providing general purpose computing capability in the form of on-demand virtual resources.”

To test their theories, they developed a baseline GPGPU cloud system outfitted with Kepler GPUs. The system is comprised of a cloud layer, a server layer, and a GPGPU layer, and the paper further describes “the hardware features, task features, scheduling mechanism, and execution mechanism of each layer.” The work aims to uncover hardware potential while also improving task performance. In identifying the advantages to general-purpose computing on a GPGPU cloud, the authors show themselves to be on the forefront of an emerging paradigm.

Next >> Heterogeneous Computing on GPU Clusters

Heterogeneous Computing on GPU Clusters

A group of scientists from the University of Minnesota and University of Colorado Boulder have contributed to a recently-published book, GPU Solutions to Multi-scale Problems in Science and Engineering. Their chapter, titled High Throughput Heterogeneous Computing and Interactive Visualization on a Desktop Supercomputer, examines some of the computational improvements that have resulted from the GPU accelerator movement. Their test system, a “desktop supercomputer,” was constructed for less than $2,500 using commodity parts, including a Tesla C1060 card and a GeForce GTX 295 card. The GPU cluster runs on Linux, and employs CUDA, MPI and other software as needed.

The authors make some interesting observations, including the following:

MPI is used not only for distributing and/or transferring the computing loads among the GPU devices, but also for controlling the process of visualization. Several applications of heterogeneous computing have been successfully run on this desktop. Calculation of long-ranged forces in the n-body problem with fast multi-pole method can consume more than 85 % of the cycles and generate 480 GFLOPS of throughput. Mixed programming of CUDA-based C and Matlab has facilitated interactive visualization during simulations.

They explain that what sets their work apart from other published research is their use of multiple GPU devices on one desktop, employed by multiple users for various types of applications at the same time. They state that they have extended GPU acceleration from the single program multiple data paradigm to the multiple program multiple data paradigm, and claim “test runs have shown that running multiple applications on one GPU device or running one application across multiple GPU devices can be done as conveniently as on traditional CPUs.”

Next >> Accelerators Compared for Energy Efficiency

Accelerators Compared for Energy Efficiency

The entire book, GPU Solutions to Multi-scale Problems in Science and Engineering, is quite fascinating. Another chapter written by University of Houston’s Lennart Johnsson explores the energy efficiency of accelerated HPC servers.

Johnsson traces the evolution of mass market, specialized processors, including the Cell Broadband Engine (CBE) and graphics processors. She notes that GPUs, in particular, have received significant attention. The addition of hardware support for double-precision floating-point arithmetic, introduced three years ago, was key to this signification uptick in adoption, as was the recent support of Error Correcting Code.

To analyze the feasibility of deploying accelerated clusters, PRACE (the Partnership for Advanced Computing in Europe) performed a study, investigating three types of accelerators, the CBE, GPUs and ClearSpeed. The study assessed several metrics, including performance, efficiency, power efficiency for double-precision arithmetic and programmer productivity.

In this chapter, titled “Efficiency, Energy Efficiency and Programming of Accelerated HPC Servers: Highlights of PRACE Studies,” Johnsson presents and analyzes some of the results from those experiments. She observes that the “GPU performed surprisingly significantly better than the CPU on the sparse matrix-vector multiplication on which the ClearSpeed performed surprisingly poorly. For matrix-multiplication, HPL and FFT the ClearSpeed accelerator was by far the most energy efficient device.”

Next >> HPC Award Winners

Inaugural HPC Award Winners

The Department of Energy’s National Energy Research Scientific Computing Center (NERSC) unveiled the winners of their inaugural High Performance Computing (HPC) Achievement Awards. The announcement was made at the annual NERSC User Group meeting at the Lawrence Berkeley National Laboratory (Berkeley Lab).

All NERSC users, the awardees were selected for their innovative use of HPC resources to help solve major computational or humanitarian challenges. Two early career awards were also presented.

NERSC Director Sudip Dosanjh stated that “High performance computing is changing how science is being done, and facilitating breakthroughs that would have been impossible a decade ago. The 2013 NERSC Achievement Award winners highlight some of the ways this trend is expanding our fundamental understanding of science, and how we can use this knowledge to benefit humanity.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This