The Week in HPC Research

By Nicole Hemsoth

February 14, 2013

The top research stories of the week have been hand-selected from major science centers, prominent journals and leading conference proceedings. Here’s another diverse set of items, including whole brain simulation; a look at High Performance Linpack; the coming GPGPU cloud paradigm; heterogenous GPU programming; and a comparison of accelerator-based servers.

Brain Simulation Project

The Human Brain Project, one of the most ambitious projects of its kind, has just been awarded half-a-million Euros over a 10-year timeframe. The European Commission funded the innovative program as part of its Future and Emerging Technologies (FET) flagship program. Led by Henry Markram, a neuroscientist at the Swiss Federal Institute of Technology in Lausanne, the project aims to reconstruct the brain piece-by-piece, using cutting-edge supercomputing resources.

According to the announcement:

As a result of this initiative, in neuroscience and neuroinformatics the brain simulation will collect and integrate experimental data, identifying and filling gaps in our knowledge. In medicine, the project’s results will facilitate better diagnosis, combined with disease and drug simulation. In computing, new techniques of interactive supercomputing, driven by the needs of brain simulation, will impact a range of industries, while devices and systems, modelled after the brain, will overcome fundamental limits on the energy-efficiency, reliability and programmability of current technologies, clearing the road for systems with brain-like intelligence.

The “Human Brain Project” is on track to become the world’s largest experimental facility for developing the most detailed model of the brain. The research will increase our understanding of how the human brain works, which has countless implications for technology and medicine, from personalized medical treatments to artificial intelligence breakthroughs.

Researchers are divided over the news. Detractors say it’s an impossible endeavor at our current stage of computational development to model the brain’s 86 billion neurons. To make it really interesting will mean capturing the brain’s actual creative potential and intelligence, otherwise it will just be a big computer.

Next >> An Investigation into High Performance Linpack

An Investigation into High Performance Linpack

A research item in the Proceedings of 2012 2nd IEEE International Conference on Parallel Distributed and Grid Computing, which took place Dec. 6-8, 2012, presents an analysis of process distribution in HPC cluster using High Performance Linpack.

The authors, a group of computer scientists from the Raja Ramanna Centre for Advanced Technology in Indore, India Computing acknowledge the fact that scientific endeavors increasingly rely on parallel programming techniques running on High Performance Computing Clusters (HPCC).

When it comes to measuring cluster performance, there are multiple factors to take into account. “Memory, interconnect bandwidth, number of cores per processor/ node and job complexity are the major parameters which affect and govern the peak computing power delivered by HPCC,” they write.

The paper describes the researchers’ experiments with High Performance Linpack (HPL). They use the benchmark to analyze the effect of job distribution among single processors versus distributed processors. They’re also investigating the effect of the system interconnect on job performance. The work centers on an InfiniBand-connected HPC cluster.

Next >> the GPGPU Cloud Paradigm

The GPGPU Cloud Paradigm

The increasing prevalence of hybrid HPC systems that use coprocessors like GPUs to improve performance has implications to HPC cloud. In a new research paper [PDF], a team of computer scientists from the College of Computer Science and Technology at Jilin University in Changchun, China, explores the idea of GPGPU cloud as a paradigm for general purpose computing. Their work appears in the February 2013 issue of the Tsinghua Science and Technology Journal.

The authors start with the premise that the “Kepler General Purpose GPU (GPGPU) architecture was developed to directly support GPU virtualization and make GPGPU cloud computing more broadly applicable by providing general purpose computing capability in the form of on-demand virtual resources.”

To test their theories, they developed a baseline GPGPU cloud system outfitted with Kepler GPUs. The system is comprised of a cloud layer, a server layer, and a GPGPU layer, and the paper further describes “the hardware features, task features, scheduling mechanism, and execution mechanism of each layer.” The work aims to uncover hardware potential while also improving task performance. In identifying the advantages to general-purpose computing on a GPGPU cloud, the authors show themselves to be on the forefront of an emerging paradigm.

Next >> Heterogeneous Computing on GPU Clusters

Heterogeneous Computing on GPU Clusters

A group of scientists from the University of Minnesota and University of Colorado Boulder have contributed to a recently-published book, GPU Solutions to Multi-scale Problems in Science and Engineering. Their chapter, titled High Throughput Heterogeneous Computing and Interactive Visualization on a Desktop Supercomputer, examines some of the computational improvements that have resulted from the GPU accelerator movement. Their test system, a “desktop supercomputer,” was constructed for less than $2,500 using commodity parts, including a Tesla C1060 card and a GeForce GTX 295 card. The GPU cluster runs on Linux, and employs CUDA, MPI and other software as needed.

The authors make some interesting observations, including the following:

MPI is used not only for distributing and/or transferring the computing loads among the GPU devices, but also for controlling the process of visualization. Several applications of heterogeneous computing have been successfully run on this desktop. Calculation of long-ranged forces in the n-body problem with fast multi-pole method can consume more than 85 % of the cycles and generate 480 GFLOPS of throughput. Mixed programming of CUDA-based C and Matlab has facilitated interactive visualization during simulations.

They explain that what sets their work apart from other published research is their use of multiple GPU devices on one desktop, employed by multiple users for various types of applications at the same time. They state that they have extended GPU acceleration from the single program multiple data paradigm to the multiple program multiple data paradigm, and claim “test runs have shown that running multiple applications on one GPU device or running one application across multiple GPU devices can be done as conveniently as on traditional CPUs.”

Next >> Accelerators Compared for Energy Efficiency

Accelerators Compared for Energy Efficiency

The entire book, GPU Solutions to Multi-scale Problems in Science and Engineering, is quite fascinating. Another chapter written by University of Houston’s Lennart Johnsson explores the energy efficiency of accelerated HPC servers.

Johnsson traces the evolution of mass market, specialized processors, including the Cell Broadband Engine (CBE) and graphics processors. She notes that GPUs, in particular, have received significant attention. The addition of hardware support for double-precision floating-point arithmetic, introduced three years ago, was key to this signification uptick in adoption, as was the recent support of Error Correcting Code.

To analyze the feasibility of deploying accelerated clusters, PRACE (the Partnership for Advanced Computing in Europe) performed a study, investigating three types of accelerators, the CBE, GPUs and ClearSpeed. The study assessed several metrics, including performance, efficiency, power efficiency for double-precision arithmetic and programmer productivity.

In this chapter, titled “Efficiency, Energy Efficiency and Programming of Accelerated HPC Servers: Highlights of PRACE Studies,” Johnsson presents and analyzes some of the results from those experiments. She observes that the “GPU performed surprisingly significantly better than the CPU on the sparse matrix-vector multiplication on which the ClearSpeed performed surprisingly poorly. For matrix-multiplication, HPL and FFT the ClearSpeed accelerator was by far the most energy efficient device.”

Next >> HPC Award Winners

Inaugural HPC Award Winners

The Department of Energy’s National Energy Research Scientific Computing Center (NERSC) unveiled the winners of their inaugural High Performance Computing (HPC) Achievement Awards. The announcement was made at the annual NERSC User Group meeting at the Lawrence Berkeley National Laboratory (Berkeley Lab).

All NERSC users, the awardees were selected for their innovative use of HPC resources to help solve major computational or humanitarian challenges. Two early career awards were also presented.

NERSC Director Sudip Dosanjh stated that “High performance computing is changing how science is being done, and facilitating breakthroughs that would have been impossible a decade ago. The 2013 NERSC Achievement Award winners highlight some of the ways this trend is expanding our fundamental understanding of science, and how we can use this knowledge to benefit humanity.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

CMU’s Latest “Card Shark” – Libratus – is Beating the Poker Pros (Again)

January 20, 2017

It’s starting to look like Carnegie Mellon University has a gambling problem – can’t stay away from the poker table. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This