Yottamine Serves Up Predictive Analytics On-Demand

By Tiffany Trader

February 18, 2013

Predictive modeling is not new, but startup Yottamine Analytics is counting on the convenience and economics of cloud computing to make it a lot more popular. Its cloud-based predictive modeling solution combines the benefits of EC2 spin-up automation and large-scale program parallelism to provide predictive power by the hour for pennies a minute.

Yottamine specializes in software for predictive analytics, specifically what is often referred to as machine learning. The software examines a large number of examples and develops a model that can then look at new data and make conclusions about it.

Take a spam filter, for example. If you were building a spam filter with this kind of software, you would essentially submit to the software, in a specially encoded form, examples of email messages, ones that are spam and ones that are not spam.

The spam filter example is provided by Tim Negris, the vice president of sales and marketing for Yottamine. Negris has been in the data arena for some time; he was formally an executive at Oracle and IBM as well as a number of other startups.

“What the software does is actually quite brilliant,” he says. “It figures out a mathematical formula that given a new example where it doesn’t know whether it’s spam or not, it can predict whether it is or it isn’t.”

This kind of computation is extraordinarily compute-intensive, says Negris. There’s this gigantic matrix of binary values that requires very complex multi-dimensional mathematics. It burns through a lot of cycles.

This kind of machine learning has been around for a while, but it hasn’t made good economic sense because of the very large computational requirement. “Everyone says the same thing,”  says Negris, “‘This is a very promising type of technology, but the computer you would need to have in your datacenter to do it is sufficiently large to where you’d have a difficult time doing it.’ That’s where HPC in the cloud comes into play.”

Yottamine has teamed up with Amazon Web Services to provide machine learning on-demand. “Normally this kind of process requires a lot of trial and error guesswork on the computation side and a lot of hand-work on the deployment side, including setting up the cluster instances,” says Negris. “Configuring this by-hand is not impossible, but takes some time. We automate a lot of those processes so the data scientist can say ‘here’s my data, spin me up a cluster and let’s get a model built.'”

“Using Amazon definitely advances the potential for this kind of machine learning. There’s an interesting affinity between the cost economics of cloud computing and the way in which you use a computer for this kind of thing. The designer spends a couple days figuring out what they need and getting the data ready and then the model is built and you’re off and running until you need to revise the model or build a new model,” is how Negris puts it.

The Yottamine team has been working on finalizing pricing details and lining up customers in preparation for their official launch, which is scheduled for next week. Depending on the algorithm, pricing will be in the range of $10-$50 per node hour. Expect standard linear machine learning algorithms to have a lower price point than more complex Gaussian variants, which can process enormous amounts of information very quickly.

Negris explains their solutions enable very fast runs, meaning a job that would normally take six days with typical open source research software might take only six hours with Yottamine’s software.

“The time compression is considerable,” he says. “You can do a huge model in the space of five hours. For approximately $250, you have a model that two years ago would have required you to own a two-million dollar supercomputer.”

Next >> In the Beginning

Yottamine founder David Huang has been working in machine learning for many years. He started out as a research post doc making algorithms scalable. He finds machine learning very interesting. “It’s not like some problems in biology where data needs are lower and everything can fit into memory but computation needs are very high and take a long time. Machine learning can be both compute and data-intensive if you use a complex model, which is what gives you higher accuracy,” he says.

Huang recalls his own frustrations coming up with big ideas and being told by his supervisor that they were impractical because there wasn’t enough compute power. So three years ago, he started his own company. He sees a huge opportunity for data scientists to be able to predict a wide range of variables for problems that require a huge amount of computing power.

“To solve these problems, we need to be able to use a lot of computing power, and that is complicated. To transform a machine learning algorithm from a single-threaded design into a parallelized computing environment is very difficult,” Huang explains.

To help them overcome the constraints that he once faced, he has worked to bring highly parallel, cloud-based machine learning software to data scientists.

“Our clients are working data scientists who on a daily basis need to do models for a given application; it could be insurance, it could be stock market or finance, it could be digital advertising. The one thing in common is they want to do a model fast and they want to do a highly-accurate model. Such a model requires a lot of computing power, and that’s where the majority of our use cases are in,” he says.

There are many different kinds of machine learning algorithms, and some are more easy to parallelize than others, but most often the best and most desirable are the hardest to parallelize, notes Huang. He points to support vector machines (SVM), which are very robust and have good performance in terms of accuracy, but require a lot of computing power and are not easy to parallelize. “What we’re doing is taking one of the best algorithms out there and parallelizing it so it’s scalable and provides robust performance for data scientists,” he says.

The cloud poses its own challenges, though. There are cost and time considerations that go with moving data into and out of the cloud. The startup’s founder points out that data into Amazon is free; the cloud provider only charges for data out. On top of that, Yottamine doesn’t charge extra for their clients’ Amazon usage. The majority of users will use the Internet to upload their data to Amazon’s S3 storage system.

The models dictate the size of the data. Some are very compact, so getting them out of the cloud is not that expensive or time-consuming. But if someone had an enormous data set, they could use Amazon’s disk delivery system (aka sneakernet). However, the Yottamine reps do not anticipate many issues. “The data charges are small compared to the computational charges from an infrastructure cost standpoint,” observes Negris.

Regarding potential data concerns around security and privacy, the rep is quick to respond: “In our case, the data that’s actually being operated on – the data that’s being submitted to the SVM algorithm – is simply a binary matrix; it’s not a data set in any conventional sense. We stuff it into Hadoop, but it’s a binary matrix,” he says.

“Not only is it denatured, it goes beyond that. There’s a fundamental data transformation on the way to the cloud where what you’re handing up is a matrix of ones and zeros that has zero human-recognizable information or even machine-recognizable information, because the metadata is not necessary. Column heading information – ­ race, zip code or age, for example ­ – is not necessary to obtain the model. Somebody trying to get at the data would see a one in the first column, but wouldn’t know what that column was – there wouldn’t be a way to reverse engineer it.”

When it comes to Amazon EC2 instance types, Yottamine selects the virtual machine that best matches the problem size and the algorithm selected. The default for a linear algorithm that requires high CPU performance is the High-CPU Extra Large Instance. For nonlinear problems, which are more complex and require more memory even when the size of the problem is not very big, the company often employs Amazon’s High Memory Instance, specifically the High-Memory Quadruple Extra Large Instance.

Memory is key; in-memory computing achieves the biggest efficiencies. For the fastest possible configurations, Yottamine utilizes the EC2 High-I/O Instance which is backed by SSD for even more speed, but since this is still a newer instance type Amazon generally limits their use to two per user. The High-I/O Instance also includes 10 Gigabit Ethernet, so it’s a good fit for algorithms that rely on parallel programming models like MPI, where that high-speed interconnect counts most.

But speed isn’t always the ultimate priority for customers. Negris explains that it often depends on the vertical and the frequency at which the model is refreshed. The models used in credit card fraud detection do not refresh that often – perhaps on a quarterly basis. It’s a very rigid and well-established domain, and the information is well-defined. But the data coming from a click-stream could not be more opposite, so the Web advertising sector has high-turnover for model design. Thus they tend to be more speed-sensitive and less cost-sensitive.

As for likely competition, Negris divides potential challenges into two camps. He anticipates the most difficult market to crack will be current Oracle and SAS customers. These traditional software vendors offer an SVM algorithm as part of their portfolio. Yottamine, however, claims to offer a wider selection of predictive modeling software with six different SVM algorithms alone, which gives them the edge in some situations.

The other market penetration challenge comes from research algorithms that were initially built as part of an academic project, thesis or dissertation and were put into the open source stream, but Negris asserts that these aren’t very polished or industry-hardened since they were usually built for a single-purpose. They also require a certain amount of user expertise and experience.

Yottamine is hoping that its unique cloud-based approach and focus on performance, accuracy and easy of use will give its software the advantage over these conventional commercial and open source algorithms.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: September (Part 1)

September 18, 2018

In this new bimonthly feature, HPCwire will highlight newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Check back every Read more…

By Oliver Peckham

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and development. Among other things it would establish a National Quantu Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU--and a refresh of its inference server software packaged as Read more…

By George Leopold

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

A Crystal Ball for HPC

People are notoriously bad at predicting the future.  This very much includes experts. In the Forbes article “Why Most Predictions Are So Bad” Philip Tetlock discusses the largest and best-known test of the accuracy of expert predictions which show that any experts would do better if they make random guesses. Read more…

NSF Highlights Expanded Efforts for Broadening Participation in Computing

September 13, 2018

Today, the Directorate of Computer and Information Science and Engineering (CISE) of the NSF released a letter highlighting the expansion of its broadening participation in computing efforts. The letter was penned by Jam Read more…

By Staff

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

No Go for GloFo at 7nm; and the Fujitsu A64FX post-K CPU

September 5, 2018

It’s been a news worthy couple of weeks in the semiconductor and HPC industry. There were several HPC relevant disclosures at Hot Chips 2018 to whet appetites Read more…

By Dairsie Latimer

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This