Yottamine Serves Up Predictive Analytics On-Demand

By Tiffany Trader

February 18, 2013

Predictive modeling is not new, but startup Yottamine Analytics is counting on the convenience and economics of cloud computing to make it a lot more popular. Its cloud-based predictive modeling solution combines the benefits of EC2 spin-up automation and large-scale program parallelism to provide predictive power by the hour for pennies a minute.

Yottamine specializes in software for predictive analytics, specifically what is often referred to as machine learning. The software examines a large number of examples and develops a model that can then look at new data and make conclusions about it.

Take a spam filter, for example. If you were building a spam filter with this kind of software, you would essentially submit to the software, in a specially encoded form, examples of email messages, ones that are spam and ones that are not spam.

The spam filter example is provided by Tim Negris, the vice president of sales and marketing for Yottamine. Negris has been in the data arena for some time; he was formally an executive at Oracle and IBM as well as a number of other startups.

“What the software does is actually quite brilliant,” he says. “It figures out a mathematical formula that given a new example where it doesn’t know whether it’s spam or not, it can predict whether it is or it isn’t.”

This kind of computation is extraordinarily compute-intensive, says Negris. There’s this gigantic matrix of binary values that requires very complex multi-dimensional mathematics. It burns through a lot of cycles.

This kind of machine learning has been around for a while, but it hasn’t made good economic sense because of the very large computational requirement. “Everyone says the same thing,”  says Negris, “‘This is a very promising type of technology, but the computer you would need to have in your datacenter to do it is sufficiently large to where you’d have a difficult time doing it.’ That’s where HPC in the cloud comes into play.”

Yottamine has teamed up with Amazon Web Services to provide machine learning on-demand. “Normally this kind of process requires a lot of trial and error guesswork on the computation side and a lot of hand-work on the deployment side, including setting up the cluster instances,” says Negris. “Configuring this by-hand is not impossible, but takes some time. We automate a lot of those processes so the data scientist can say ‘here’s my data, spin me up a cluster and let’s get a model built.'”

“Using Amazon definitely advances the potential for this kind of machine learning. There’s an interesting affinity between the cost economics of cloud computing and the way in which you use a computer for this kind of thing. The designer spends a couple days figuring out what they need and getting the data ready and then the model is built and you’re off and running until you need to revise the model or build a new model,” is how Negris puts it.

The Yottamine team has been working on finalizing pricing details and lining up customers in preparation for their official launch, which is scheduled for next week. Depending on the algorithm, pricing will be in the range of $10-$50 per node hour. Expect standard linear machine learning algorithms to have a lower price point than more complex Gaussian variants, which can process enormous amounts of information very quickly.

Negris explains their solutions enable very fast runs, meaning a job that would normally take six days with typical open source research software might take only six hours with Yottamine’s software.

“The time compression is considerable,” he says. “You can do a huge model in the space of five hours. For approximately $250, you have a model that two years ago would have required you to own a two-million dollar supercomputer.”

Next >> In the Beginning

Yottamine founder David Huang has been working in machine learning for many years. He started out as a research post doc making algorithms scalable. He finds machine learning very interesting. “It’s not like some problems in biology where data needs are lower and everything can fit into memory but computation needs are very high and take a long time. Machine learning can be both compute and data-intensive if you use a complex model, which is what gives you higher accuracy,” he says.

Huang recalls his own frustrations coming up with big ideas and being told by his supervisor that they were impractical because there wasn’t enough compute power. So three years ago, he started his own company. He sees a huge opportunity for data scientists to be able to predict a wide range of variables for problems that require a huge amount of computing power.

“To solve these problems, we need to be able to use a lot of computing power, and that is complicated. To transform a machine learning algorithm from a single-threaded design into a parallelized computing environment is very difficult,” Huang explains.

To help them overcome the constraints that he once faced, he has worked to bring highly parallel, cloud-based machine learning software to data scientists.

“Our clients are working data scientists who on a daily basis need to do models for a given application; it could be insurance, it could be stock market or finance, it could be digital advertising. The one thing in common is they want to do a model fast and they want to do a highly-accurate model. Such a model requires a lot of computing power, and that’s where the majority of our use cases are in,” he says.

There are many different kinds of machine learning algorithms, and some are more easy to parallelize than others, but most often the best and most desirable are the hardest to parallelize, notes Huang. He points to support vector machines (SVM), which are very robust and have good performance in terms of accuracy, but require a lot of computing power and are not easy to parallelize. “What we’re doing is taking one of the best algorithms out there and parallelizing it so it’s scalable and provides robust performance for data scientists,” he says.

The cloud poses its own challenges, though. There are cost and time considerations that go with moving data into and out of the cloud. The startup’s founder points out that data into Amazon is free; the cloud provider only charges for data out. On top of that, Yottamine doesn’t charge extra for their clients’ Amazon usage. The majority of users will use the Internet to upload their data to Amazon’s S3 storage system.

The models dictate the size of the data. Some are very compact, so getting them out of the cloud is not that expensive or time-consuming. But if someone had an enormous data set, they could use Amazon’s disk delivery system (aka sneakernet). However, the Yottamine reps do not anticipate many issues. “The data charges are small compared to the computational charges from an infrastructure cost standpoint,” observes Negris.

Regarding potential data concerns around security and privacy, the rep is quick to respond: “In our case, the data that’s actually being operated on – the data that’s being submitted to the SVM algorithm – is simply a binary matrix; it’s not a data set in any conventional sense. We stuff it into Hadoop, but it’s a binary matrix,” he says.

“Not only is it denatured, it goes beyond that. There’s a fundamental data transformation on the way to the cloud where what you’re handing up is a matrix of ones and zeros that has zero human-recognizable information or even machine-recognizable information, because the metadata is not necessary. Column heading information – ­ race, zip code or age, for example ­ – is not necessary to obtain the model. Somebody trying to get at the data would see a one in the first column, but wouldn’t know what that column was – there wouldn’t be a way to reverse engineer it.”

When it comes to Amazon EC2 instance types, Yottamine selects the virtual machine that best matches the problem size and the algorithm selected. The default for a linear algorithm that requires high CPU performance is the High-CPU Extra Large Instance. For nonlinear problems, which are more complex and require more memory even when the size of the problem is not very big, the company often employs Amazon’s High Memory Instance, specifically the High-Memory Quadruple Extra Large Instance.

Memory is key; in-memory computing achieves the biggest efficiencies. For the fastest possible configurations, Yottamine utilizes the EC2 High-I/O Instance which is backed by SSD for even more speed, but since this is still a newer instance type Amazon generally limits their use to two per user. The High-I/O Instance also includes 10 Gigabit Ethernet, so it’s a good fit for algorithms that rely on parallel programming models like MPI, where that high-speed interconnect counts most.

But speed isn’t always the ultimate priority for customers. Negris explains that it often depends on the vertical and the frequency at which the model is refreshed. The models used in credit card fraud detection do not refresh that often – perhaps on a quarterly basis. It’s a very rigid and well-established domain, and the information is well-defined. But the data coming from a click-stream could not be more opposite, so the Web advertising sector has high-turnover for model design. Thus they tend to be more speed-sensitive and less cost-sensitive.

As for likely competition, Negris divides potential challenges into two camps. He anticipates the most difficult market to crack will be current Oracle and SAS customers. These traditional software vendors offer an SVM algorithm as part of their portfolio. Yottamine, however, claims to offer a wider selection of predictive modeling software with six different SVM algorithms alone, which gives them the edge in some situations.

The other market penetration challenge comes from research algorithms that were initially built as part of an academic project, thesis or dissertation and were put into the open source stream, but Negris asserts that these aren’t very polished or industry-hardened since they were usually built for a single-purpose. They also require a certain amount of user expertise and experience.

Yottamine is hoping that its unique cloud-based approach and focus on performance, accuracy and easy of use will give its software the advantage over these conventional commercial and open source algorithms.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Natural Gas, Precision Agriculture, Neural Networks and More

December 6, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced computing technologies for the AI and exascale era. "Over th Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has now encompassed CPUs offered by the leading public cloud serv Read more…

By Doug Black

Medical Imaging Gets an AI Boost

December 3, 2019

AI technologies incorporated into diagnostic imaging tools have proven useful in eliminating confirmation bias, often outperforming human clinicians who may bring their own prejudices. Another issue slowing progress is t Read more…

By George Leopold

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

AI Needs Intelligent HPC infrastructure

Artificial Intelligence (AI) has revolutionized entire industries and enables humanity to solve some of the most daunting challenges. To accomplish this, it requires massive amounts of data from heterogeneous sources that is processed it new ways that differs significantly from HPC applications. Read more…

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science itself. At SC19, Steve Squyres’ opening keynote recounting th Read more…

By John Russell

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science its Read more…

By John Russell

NSCI Update – Adapting to a Changing Landscape

December 2, 2019

It was November of 2017 when we last visited the topic of the National Strategic Computing Initiative (NSCI). As you will recall, the NSCI was started with an Executive Order (E.O. No. 13702), that was issued by President Obama in July of 2015 and was followed by a Strategic Plan that was released in July of 2016. The question for November of 2017... Read more…

By Alex R. Larzelere

Tsinghua University Racks Up Its Ninth Student Cluster Championship Win at SC19

November 27, 2019

Tsinghua University has done it again. At SC19 last week, the eight-time gold medal-winner team took home the top prize in the 2019 Student Cluster Competition Read more…

By Oliver Peckham

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

How the Gordon Bell Prize Winners Used Summit to Illuminate Transistors

November 22, 2019

At SC19, the Association for Computing Machinery (ACM) awarded the prestigious Gordon Bell Prize to the Swiss Federal Institute of Technology (ETH) Zurich. The Read more…

By Oliver Peckham

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This