The Week in HPC Research

By Nicole Hemsoth

February 21, 2013

The top research stories of the week have been hand-selected from prominent journals and leading conference proceedings. Here’s another diverse set of items, including one on GPU programming, distributed file systems, exhaustive search with parallel agents, the benefits of invasive computing, and an HPC cloud proof-of-concept.

Extending OpenMP for GPU Programming

The International Journal of Computational Science and Engineering (Volume 8, Number 1/2013) includes an interesting research item from Seyong Lee (Computer Science and Mathematics Division, Oak Ridge National Laboratory) and Rudolf Eigenmann (School of Electrical and Computer Engineering, Purdue University). The duo have developed a directive-based OpenMP extension to address programmability and tunability issues relevant to the GPGPU developer community.

GPGPU computing provides an inexpensive parallel computing platform for compute-intensive applications, yet programming complexity can challenge developers hindering more widespread adoption, the authors note. “Even though the compute unified device architecture (CUDA) programming model offers better abstraction, developing efficient GPGPU code is still complex and error–prone,” they argue.

Thus the authors propose a new programming interface, called OpenMPC, comprised of standard OpenMP and a new set of compiler directives and environment variables that have been extended for CUDA. They argue that OpenMPC, a directive–based, high–level programming model, offers better programmability and tunability for GPGPU code.

“We have developed a fully automatic compilation and user–assisted tuning system supporting OpenMPC. In addition to a range of compiler transformations and optimisations, the system includes tuning capabilities for generating, pruning, and navigating the search space of compilation variants. Evaluation using 14 applications shows that our system achieves 75% of the performance of the hand–coded CUDA programmes (92% if excluding one exceptional case),” they write.

Next >>

Six Distributed File Systems

A trio of French scientists provide a thorough analysis of six distributed file systems in this recent 39-page research paper, appearing in the HAL/INRIA open archive. The authors, one from SysFera and two from Laboratoire MIS at the Universite de Picardie Jules Verne, start with the observation that a large number of HPC applications rely on distributed computing environments to process and analyze large amounts of data. (Examples provided include probabilistic analysis, weather forecasting and aerodynamic research.) They further note the emergence of new infrastructures designed to handle the increased computational demand. Most of these new architectures, the authors assert, involve some manner of distributed computing, such that the computing process is spread among the nodes of a large distributed computing platform.

Furthermore the team believes that the growing body of scientific data will likewise necessitate innovations in distributed storage. “Easy to use and reliable storage solutions” are essential for scientific computing, they argue, and the community already has a “well-tried solution to this issue,” in the form of Distributed File Systems (DFSs).

The paper offers a comparison of six modern DFSs as to three fundamental issues: scalability, transparency and fault tolerance. For their study, the authors selected popular, widely-used and frequently updated DFSs: HDFS, MooseFS, iRODS, Ceph, GlusterFS, and Lustre.

Next >>

Exhaustive Search with Parallel Agents

In a recent paper, Macedonia researcher Toni Draganov Stojanovski from University for Information Science And Technology in the Republic of Macedonia sets out to examine the performance of exhaustive search when it is conducted with many search agents working in parallel.

Stojanovski and his research team observe that the advance of manycore processors and more sophisticated distributed processing offers more opportunities for exhaustive search via the use of multiple search agents. While there are a selection of elegant algorithms available for solving complex problems, exhaustive search remains as the best or only solution for real-life problems with no regular structure.

The paper reviews the performance that is achieved using the exhaustive search approach in conjunction with several different search agents with special attention to the following parameters:

• Differences in speeds of search agents.

• Length of allocated search subregions.

• Type of communication between central server and agents.

The findings reveal that the performance of the search improves with the increase in the level of mutual assistance between agents. Furthermore, nearly identical performance outcomes can be achieved with homogeneous and heterogeneous search agents as long as “the lengths of subregions allocated to individual search regions follow the differences in the speeds of heterogeneous search agents.” The research team also demonstrate how to achieve the optimum search performance by means of increasing the dimension of the search region.

The work appears in the January issue of the Turkish Journal of Electrical Engineering & Computer Sciences.

Next >>

The Benefits of Invasive Computing

In their paper, titled Invasive Computing on High Performance Shared Memory Systems, three researchers from the Department of Informatics, at Garching, Germany, offer new approaches for improving the throughput of runtime-adaptive applications on cutting-edge HPC systems. Their work was published as a chapter in Facing the Multicore Challenge III.

According to the team, there are multiple issues at play:

A first issue is the, in general, missing information about the actual impact of unforeseeable workload by adaptivity and of the unknown number of time steps or iterations on the runtime of adaptive applications. Another issue is that resource scheduling on HPC systems is currently done before an application is started and remains unchanged afterwards, even in case of varying requirements. Furthermore, an application cannot be started after another running application allocated all resources.

The authors propose a solution that involves the design of algorithms that adapt their use of resources during runtime, e.g., by relinquishing or adding compute cores. In the event that concurrent applications are competing for resources, they recommend that an appropriate resource management solution be adopted.

To improve the throughput of runtime-adaptive applications, the computer scientists employed invasive paradigms that start applications and schedule resources during runtime. Scheduling work can be achieved through the use of a global resource manager, and scalability graphs help improve load balancing of multiple applications. In the case of adaptive simulations, several scalability graphs are employed.

The paper includes a proof-of-concept that demonstrates runtime/throughput results for a fully adaptive shallow-water simulation.

Next >>

Easy to Use Cloud Service

Among the many HPC cloud research pieces that were published this week was an Australian endeavor that seeks to transform complicated HPC applications into easy-to-use SaaS cloud services. Researchers Adam K.L. Wonga and Andrzej M. Goscinskia from the School of Information Technology at Deakin University in Australia set out to develop and test a unified framework for HPC applications as services in clouds.

The duo acknowledge the benefits of HPC cloud. Scalable, affordable and accessible on demand, the use of HPC resources in a cloud environment have been a natural fit for many scientific disciplines, including biology, medicine, chemistry, they write. Still they have observed a steep learning curve when it comes to preparing for and deploying HPC applications in the cloud. This they say has stood in the way of many innovative HPC-backed discoveries.

To remedy this situation and improve ease of use and access to HPC resources, the researchers are looking to the world of Web-based tools, but as they write “high-performance computational research are both unique and complex, which make the development of web-based tools for this research difficult.”

The paper describes their approach to developing a unified cloud framework – one that makes it easier for various domain users to deploy HPC applications in public clouds as services. Their proof-of-concept integrates three components:

(i) Amazon EC2 public cloud for providing HPC infrastructure.

(ii) a HPC service software library for accessing HPC resources.

(iii) the Galaxy web-based platform for exposing and accessing HPC application services.

The authors conclude that “this new approach can reduce the time and money needed to deploy, expose and access discipline HPC applications in clouds.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

China Plans 2019 Exascale Machine To Grow Sea Power

August 23, 2017

The glory of having the world's fastest supercomputer, as measured by the Linpack benchmark, has been China's for four years running, first with the 33-petaflops Tianhe-2 and currently with the 93-petaflops TaihuLight. T Read more…

By Tiffany Trader

Microsoft, Intel Unveil FPGA-driven Project Brainwave

August 23, 2017

We know about the seeming light-speed processing power of FPGAs and the natural fit they pose for data-dense AI workloads. But we also know that FPGAs present usability and programmability problems that flummox IT shops. Read more…

By Doug Black

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger communities? That question is at the heart of a new study pub Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Google Launches Site to Share its NYC-based Algorithm Research

August 22, 2017

Much of Google’s algorithm development occurs in groups scattered throughout New York City. Yesterday, Google launched a single website - NYC Algorithms and Optimization Team page - to provide a deeper view into all of Read more…

By John Russell

China Plans 2019 Exascale Machine To Grow Sea Power

August 23, 2017

The glory of having the world's fastest supercomputer, as measured by the Linpack benchmark, has been China's for four years running, first with the 33-petaflop Read more…

By Tiffany Trader

Microsoft, Intel Unveil FPGA-driven Project Brainwave

August 23, 2017

We know about the seeming light-speed processing power of FPGAs and the natural fit they pose for data-dense AI workloads. But we also know that FPGAs present u Read more…

By Doug Black

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger c Read more…

By Tiffany Trader

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Leading Solution Providers

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Singularity HPC Container Technology Moves Out of the Lab

May 4, 2017

Last week, Singularity – the fast-growing HPC container technology whose development has been spearheaded by Gregory Kurtzer at Lawrence Berkeley National Lab Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This