The Week in HPC Research

By Nicole Hemsoth

February 21, 2013

The top research stories of the week have been hand-selected from prominent journals and leading conference proceedings. Here’s another diverse set of items, including one on GPU programming, distributed file systems, exhaustive search with parallel agents, the benefits of invasive computing, and an HPC cloud proof-of-concept.

Extending OpenMP for GPU Programming

The International Journal of Computational Science and Engineering (Volume 8, Number 1/2013) includes an interesting research item from Seyong Lee (Computer Science and Mathematics Division, Oak Ridge National Laboratory) and Rudolf Eigenmann (School of Electrical and Computer Engineering, Purdue University). The duo have developed a directive-based OpenMP extension to address programmability and tunability issues relevant to the GPGPU developer community.

GPGPU computing provides an inexpensive parallel computing platform for compute-intensive applications, yet programming complexity can challenge developers hindering more widespread adoption, the authors note. “Even though the compute unified device architecture (CUDA) programming model offers better abstraction, developing efficient GPGPU code is still complex and error–prone,” they argue.

Thus the authors propose a new programming interface, called OpenMPC, comprised of standard OpenMP and a new set of compiler directives and environment variables that have been extended for CUDA. They argue that OpenMPC, a directive–based, high–level programming model, offers better programmability and tunability for GPGPU code.

“We have developed a fully automatic compilation and user–assisted tuning system supporting OpenMPC. In addition to a range of compiler transformations and optimisations, the system includes tuning capabilities for generating, pruning, and navigating the search space of compilation variants. Evaluation using 14 applications shows that our system achieves 75% of the performance of the hand–coded CUDA programmes (92% if excluding one exceptional case),” they write.

Next >>

Six Distributed File Systems

A trio of French scientists provide a thorough analysis of six distributed file systems in this recent 39-page research paper, appearing in the HAL/INRIA open archive. The authors, one from SysFera and two from Laboratoire MIS at the Universite de Picardie Jules Verne, start with the observation that a large number of HPC applications rely on distributed computing environments to process and analyze large amounts of data. (Examples provided include probabilistic analysis, weather forecasting and aerodynamic research.) They further note the emergence of new infrastructures designed to handle the increased computational demand. Most of these new architectures, the authors assert, involve some manner of distributed computing, such that the computing process is spread among the nodes of a large distributed computing platform.

Furthermore the team believes that the growing body of scientific data will likewise necessitate innovations in distributed storage. “Easy to use and reliable storage solutions” are essential for scientific computing, they argue, and the community already has a “well-tried solution to this issue,” in the form of Distributed File Systems (DFSs).

The paper offers a comparison of six modern DFSs as to three fundamental issues: scalability, transparency and fault tolerance. For their study, the authors selected popular, widely-used and frequently updated DFSs: HDFS, MooseFS, iRODS, Ceph, GlusterFS, and Lustre.

Next >>

Exhaustive Search with Parallel Agents

In a recent paper, Macedonia researcher Toni Draganov Stojanovski from University for Information Science And Technology in the Republic of Macedonia sets out to examine the performance of exhaustive search when it is conducted with many search agents working in parallel.

Stojanovski and his research team observe that the advance of manycore processors and more sophisticated distributed processing offers more opportunities for exhaustive search via the use of multiple search agents. While there are a selection of elegant algorithms available for solving complex problems, exhaustive search remains as the best or only solution for real-life problems with no regular structure.

The paper reviews the performance that is achieved using the exhaustive search approach in conjunction with several different search agents with special attention to the following parameters:

• Differences in speeds of search agents.

• Length of allocated search subregions.

• Type of communication between central server and agents.

The findings reveal that the performance of the search improves with the increase in the level of mutual assistance between agents. Furthermore, nearly identical performance outcomes can be achieved with homogeneous and heterogeneous search agents as long as “the lengths of subregions allocated to individual search regions follow the differences in the speeds of heterogeneous search agents.” The research team also demonstrate how to achieve the optimum search performance by means of increasing the dimension of the search region.

The work appears in the January issue of the Turkish Journal of Electrical Engineering & Computer Sciences.

Next >>

The Benefits of Invasive Computing

In their paper, titled Invasive Computing on High Performance Shared Memory Systems, three researchers from the Department of Informatics, at Garching, Germany, offer new approaches for improving the throughput of runtime-adaptive applications on cutting-edge HPC systems. Their work was published as a chapter in Facing the Multicore Challenge III.

According to the team, there are multiple issues at play:

A first issue is the, in general, missing information about the actual impact of unforeseeable workload by adaptivity and of the unknown number of time steps or iterations on the runtime of adaptive applications. Another issue is that resource scheduling on HPC systems is currently done before an application is started and remains unchanged afterwards, even in case of varying requirements. Furthermore, an application cannot be started after another running application allocated all resources.

The authors propose a solution that involves the design of algorithms that adapt their use of resources during runtime, e.g., by relinquishing or adding compute cores. In the event that concurrent applications are competing for resources, they recommend that an appropriate resource management solution be adopted.

To improve the throughput of runtime-adaptive applications, the computer scientists employed invasive paradigms that start applications and schedule resources during runtime. Scheduling work can be achieved through the use of a global resource manager, and scalability graphs help improve load balancing of multiple applications. In the case of adaptive simulations, several scalability graphs are employed.

The paper includes a proof-of-concept that demonstrates runtime/throughput results for a fully adaptive shallow-water simulation.

Next >>

Easy to Use Cloud Service

Among the many HPC cloud research pieces that were published this week was an Australian endeavor that seeks to transform complicated HPC applications into easy-to-use SaaS cloud services. Researchers Adam K.L. Wonga and Andrzej M. Goscinskia from the School of Information Technology at Deakin University in Australia set out to develop and test a unified framework for HPC applications as services in clouds.

The duo acknowledge the benefits of HPC cloud. Scalable, affordable and accessible on demand, the use of HPC resources in a cloud environment have been a natural fit for many scientific disciplines, including biology, medicine, chemistry, they write. Still they have observed a steep learning curve when it comes to preparing for and deploying HPC applications in the cloud. This they say has stood in the way of many innovative HPC-backed discoveries.

To remedy this situation and improve ease of use and access to HPC resources, the researchers are looking to the world of Web-based tools, but as they write “high-performance computational research are both unique and complex, which make the development of web-based tools for this research difficult.”

The paper describes their approach to developing a unified cloud framework – one that makes it easier for various domain users to deploy HPC applications in public clouds as services. Their proof-of-concept integrates three components:

(i) Amazon EC2 public cloud for providing HPC infrastructure.

(ii) a HPC service software library for accessing HPC resources.

(iii) the Galaxy web-based platform for exposing and accessing HPC application services.

The authors conclude that “this new approach can reduce the time and money needed to deploy, expose and access discipline HPC applications in clouds.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The New Scalability

April 20, 2021

HPC is all about scalability. The most powerful systems. The biggest data sets. The most cores, the most bytes, the most flops, the most bandwidth. HPC scales! Notwithstanding a few recurring arguments over the last twenty years about scaling up versus scaling out, the definition of scalability... Read more…

Supercomputer-Powered Climate Model Makes Startling Sea Level Rise Prediction

April 19, 2021

The climate science community is tasked with striking a difficult balance: inspiring precisely the amount of alarm commensurate to the climate crisis. Make estimates that are too conservative, and the public might not re Read more…

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the large research community it supports, it also sought to optimize Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

AWS Solution Channel

Research computing with RONIN on AWS

To allow more visibility into and management of Amazon Web Services (AWS) resources and expenses and minimize the cloud skills training required to operate these resources, AWS Partner RONIN created the RONIN research computing platform. Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

The New Scalability

April 20, 2021

HPC is all about scalability. The most powerful systems. The biggest data sets. The most cores, the most bytes, the most flops, the most bandwidth. HPC scales! Notwithstanding a few recurring arguments over the last twenty years about scaling up versus scaling out, the definition of scalability... Read more…

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the larg Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX developer kit. The Clara partnerships announced during... Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU Technology Conference (GTC), held virtually once more due to the pandemic, the company unveiled its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. The announcement of the new... Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computing. Nvidia is pitching the DPU as an active engine... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire