The Week in HPC Research

By Nicole Hemsoth

February 21, 2013

The top research stories of the week have been hand-selected from prominent journals and leading conference proceedings. Here’s another diverse set of items, including one on GPU programming, distributed file systems, exhaustive search with parallel agents, the benefits of invasive computing, and an HPC cloud proof-of-concept.

Extending OpenMP for GPU Programming

The International Journal of Computational Science and Engineering (Volume 8, Number 1/2013) includes an interesting research item from Seyong Lee (Computer Science and Mathematics Division, Oak Ridge National Laboratory) and Rudolf Eigenmann (School of Electrical and Computer Engineering, Purdue University). The duo have developed a directive-based OpenMP extension to address programmability and tunability issues relevant to the GPGPU developer community.

GPGPU computing provides an inexpensive parallel computing platform for compute-intensive applications, yet programming complexity can challenge developers hindering more widespread adoption, the authors note. “Even though the compute unified device architecture (CUDA) programming model offers better abstraction, developing efficient GPGPU code is still complex and error–prone,” they argue.

Thus the authors propose a new programming interface, called OpenMPC, comprised of standard OpenMP and a new set of compiler directives and environment variables that have been extended for CUDA. They argue that OpenMPC, a directive–based, high–level programming model, offers better programmability and tunability for GPGPU code.

“We have developed a fully automatic compilation and user–assisted tuning system supporting OpenMPC. In addition to a range of compiler transformations and optimisations, the system includes tuning capabilities for generating, pruning, and navigating the search space of compilation variants. Evaluation using 14 applications shows that our system achieves 75% of the performance of the hand–coded CUDA programmes (92% if excluding one exceptional case),” they write.

Next >>

Six Distributed File Systems

A trio of French scientists provide a thorough analysis of six distributed file systems in this recent 39-page research paper, appearing in the HAL/INRIA open archive. The authors, one from SysFera and two from Laboratoire MIS at the Universite de Picardie Jules Verne, start with the observation that a large number of HPC applications rely on distributed computing environments to process and analyze large amounts of data. (Examples provided include probabilistic analysis, weather forecasting and aerodynamic research.) They further note the emergence of new infrastructures designed to handle the increased computational demand. Most of these new architectures, the authors assert, involve some manner of distributed computing, such that the computing process is spread among the nodes of a large distributed computing platform.

Furthermore the team believes that the growing body of scientific data will likewise necessitate innovations in distributed storage. “Easy to use and reliable storage solutions” are essential for scientific computing, they argue, and the community already has a “well-tried solution to this issue,” in the form of Distributed File Systems (DFSs).

The paper offers a comparison of six modern DFSs as to three fundamental issues: scalability, transparency and fault tolerance. For their study, the authors selected popular, widely-used and frequently updated DFSs: HDFS, MooseFS, iRODS, Ceph, GlusterFS, and Lustre.

Next >>

Exhaustive Search with Parallel Agents

In a recent paper, Macedonia researcher Toni Draganov Stojanovski from University for Information Science And Technology in the Republic of Macedonia sets out to examine the performance of exhaustive search when it is conducted with many search agents working in parallel.

Stojanovski and his research team observe that the advance of manycore processors and more sophisticated distributed processing offers more opportunities for exhaustive search via the use of multiple search agents. While there are a selection of elegant algorithms available for solving complex problems, exhaustive search remains as the best or only solution for real-life problems with no regular structure.

The paper reviews the performance that is achieved using the exhaustive search approach in conjunction with several different search agents with special attention to the following parameters:

• Differences in speeds of search agents.

• Length of allocated search subregions.

• Type of communication between central server and agents.

The findings reveal that the performance of the search improves with the increase in the level of mutual assistance between agents. Furthermore, nearly identical performance outcomes can be achieved with homogeneous and heterogeneous search agents as long as “the lengths of subregions allocated to individual search regions follow the differences in the speeds of heterogeneous search agents.” The research team also demonstrate how to achieve the optimum search performance by means of increasing the dimension of the search region.

The work appears in the January issue of the Turkish Journal of Electrical Engineering & Computer Sciences.

Next >>

The Benefits of Invasive Computing

In their paper, titled Invasive Computing on High Performance Shared Memory Systems, three researchers from the Department of Informatics, at Garching, Germany, offer new approaches for improving the throughput of runtime-adaptive applications on cutting-edge HPC systems. Their work was published as a chapter in Facing the Multicore Challenge III.

According to the team, there are multiple issues at play:

A first issue is the, in general, missing information about the actual impact of unforeseeable workload by adaptivity and of the unknown number of time steps or iterations on the runtime of adaptive applications. Another issue is that resource scheduling on HPC systems is currently done before an application is started and remains unchanged afterwards, even in case of varying requirements. Furthermore, an application cannot be started after another running application allocated all resources.

The authors propose a solution that involves the design of algorithms that adapt their use of resources during runtime, e.g., by relinquishing or adding compute cores. In the event that concurrent applications are competing for resources, they recommend that an appropriate resource management solution be adopted.

To improve the throughput of runtime-adaptive applications, the computer scientists employed invasive paradigms that start applications and schedule resources during runtime. Scheduling work can be achieved through the use of a global resource manager, and scalability graphs help improve load balancing of multiple applications. In the case of adaptive simulations, several scalability graphs are employed.

The paper includes a proof-of-concept that demonstrates runtime/throughput results for a fully adaptive shallow-water simulation.

Next >>

Easy to Use Cloud Service

Among the many HPC cloud research pieces that were published this week was an Australian endeavor that seeks to transform complicated HPC applications into easy-to-use SaaS cloud services. Researchers Adam K.L. Wonga and Andrzej M. Goscinskia from the School of Information Technology at Deakin University in Australia set out to develop and test a unified framework for HPC applications as services in clouds.

The duo acknowledge the benefits of HPC cloud. Scalable, affordable and accessible on demand, the use of HPC resources in a cloud environment have been a natural fit for many scientific disciplines, including biology, medicine, chemistry, they write. Still they have observed a steep learning curve when it comes to preparing for and deploying HPC applications in the cloud. This they say has stood in the way of many innovative HPC-backed discoveries.

To remedy this situation and improve ease of use and access to HPC resources, the researchers are looking to the world of Web-based tools, but as they write “high-performance computational research are both unique and complex, which make the development of web-based tools for this research difficult.”

The paper describes their approach to developing a unified cloud framework – one that makes it easier for various domain users to deploy HPC applications in public clouds as services. Their proof-of-concept integrates three components:

(i) Amazon EC2 public cloud for providing HPC infrastructure.

(ii) a HPC service software library for accessing HPC resources.

(iii) the Galaxy web-based platform for exposing and accessing HPC application services.

The authors conclude that “this new approach can reduce the time and money needed to deploy, expose and access discipline HPC applications in clouds.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hyperion Study Tracks Rise and Impact of Linux Supercomputers

May 17, 2022

That supercomputers produce impactful, lasting value is a basic tenet among the HPC community. To make the point more formally, Hyperion Research has issued a new report, The Economic and Societal Benefits of Linux Super Read more…

ECP Director Doug Kothe Named ORNL Associate Laboratory Director

May 16, 2022

The Department of Energy's Oak Ridge National Laboratory (ORNL) has selected Doug Kothe to be the next Associate Laboratory Director for its Computing and Computational Sciences Directorate (CCSD), HPCwire has learned. K Read more…

Google Cloud’s New TPU v4 ML Hub Packs 9 Exaflops of AI

May 16, 2022

Almost exactly a year ago, Google launched its Tensor Processing Unit (TPU) v4 chips at Google I/O 2021, promising twice the performance compared to the TPU v3. At the time, Google CEO Sundar Pichai said that Google’s datacenters would “soon have dozens of TPU v4 Pods, many of which will be... Read more…

Q&A with Candace Culhane, SC22 General Chair and an HPCwire Person to Watch in 2022

May 14, 2022

HPCwire is pleased to present our interview with SC22 General Chair Candace Culhane, program/project director at Los Alamos National Lab and an HPCwire 2022 Person to Watch. In this exclusive Q&A, Culhane covers her Read more…

Argonne Supercomputer Advances Energy Storage Research

May 13, 2022

The lack of large-scale energy storage bottlenecks many sources of renewable energy, such as sunlight-reliant solar power and unpredictable wind power. Researchers from Lawrence Livermore National Laboratory (LLNL) are w Read more…

AWS Solution Channel

shutterstock 1103121086

Encoding workflow dependencies in AWS Batch

Most users of HPC or Batch systems need to analyze data with multiple operations to get meaningful results. That’s really driven by the nature of scientific research or engineering processes – it’s rare that a single task generates the insight you need. Read more…

Supercomputing an Image of Our Galaxy’s Supermassive Black Hole

May 13, 2022

A supermassive black hole called Sagittarius A* (yes, the asterisk is part of it!) sits at the center of the Milky Way. Now, for the first time, we can see it. The resulting direct image of Sagittarius A*, revealed this Read more…

Google Cloud’s New TPU v4 ML Hub Packs 9 Exaflops of AI

May 16, 2022

Almost exactly a year ago, Google launched its Tensor Processing Unit (TPU) v4 chips at Google I/O 2021, promising twice the performance compared to the TPU v3. At the time, Google CEO Sundar Pichai said that Google’s datacenters would “soon have dozens of TPU v4 Pods, many of which will be... Read more…

Q&A with Candace Culhane, SC22 General Chair and an HPCwire Person to Watch in 2022

May 14, 2022

HPCwire is pleased to present our interview with SC22 General Chair Candace Culhane, program/project director at Los Alamos National Lab and an HPCwire 2022 Per Read more…

Supercomputing an Image of Our Galaxy’s Supermassive Black Hole

May 13, 2022

A supermassive black hole called Sagittarius A* (yes, the asterisk is part of it!) sits at the center of the Milky Way. Now, for the first time, we can see it. Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

Intel Extends IPU Roadmap Through 2026

May 10, 2022

Intel is extending its roadmap for infrastructure processors through 2026, the company said at its Vision conference being held in Grapevine, Texas. The company's IPUs (infrastructure processing units) are megachips that are designed to improve datacenter efficiency by offloading functions such as networking control, storage management and security that were traditionally... Read more…

Exascale Watch: Aurora Installation Underway, Now Open for Reservations

May 10, 2022

Installation has begun on the Aurora supercomputer, Rick Stevens (associate director of Argonne National Laboratory) revealed today during the Intel Vision event keynote taking place in Dallas, Texas, and online. Joining Intel exec Raja Koduri on stage, Stevens confirmed that the Aurora build is underway – a major development for a system that is projected to deliver more... Read more…

Intel’s Habana Labs Unveils Gaudi2, Greco AI Processors

May 10, 2022

At the hybrid Intel Vision event today, Intel’s Habana Labs team launched two major new products: Gaudi2, the second generation of the Gaudi deep learning training processor; and Greco, the successor to the Goya deep learning inference processor. Intel says that the processors offer significant speedups relative to their predecessors and the... Read more…

IBM Unveils Expanded Quantum Roadmap; Talks Up ‘Quantum-Centric Supercomputer’

May 10, 2022

IBM today issued an extensive and detailed expansion of its Quantum Roadmap that calls for developing a new 1386-qubit processor – Kookaburra – built from modularly scaled chips, and delivering a 4,158-qubit POC system built using three connected Kookaburra processors by 2025. Kookaburra (Australian Kingfisher) is a new architecture... Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

Facebook Parent Meta’s New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called the AI Research SuperCluster (RSC). Meta says that RSC will be used to help build new AI models, develop augmented reality tools, seamlessly analyze multimedia data and more. The supercomputer’s... Read more…

AMD/Xilinx Takes Aim at Nvidia with Improved VCK5000 Inferencing Card

March 8, 2022

AMD/Xilinx has released an improved version of its VCK5000 AI inferencing card along with a series of competitive benchmarks aimed directly at Nvidia’s GPU line. AMD says the new VCK5000 has 3x better performance than earlier versions and delivers 2x TCO over Nvidia T4. AMD also showed favorable benchmarks against several Nvidia GPUs, claiming its VCK5000 achieved... Read more…

In Partnership with IBM, Canada to Get Its First Universal Quantum Computer

February 3, 2022

IBM today announced it will deploy its first quantum computer in Canada, putting Canada on a short list of countries that will have access to an IBM Quantum Sys Read more…

Supercomputer Simulations Show How Paxlovid, Pfizer’s Covid Antiviral, Works

February 3, 2022

Just about a month ago, Pfizer scored its second huge win of the pandemic when the U.S. Food and Drug Administration issued another emergency use authorization Read more…

Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips

March 22, 2022

The battle for datacenter dominance keeps getting hotter. Today, Nvidia kicked off its spring GTC event with new silicon, new software and a new supercomputer. Speaking from a virtual environment in the Nvidia Omniverse 3D collaboration and simulation platform, CEO Jensen Huang introduced the new Hopper GPU architecture and the H100 GPU... Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

Nvidia Dominates MLPerf Inference, Qualcomm also Shines, Where’s Everybody Else?

April 6, 2022

MLCommons today released its latest MLPerf inferencing results, with another strong showing by Nvidia accelerators inside a diverse array of systems. Roughly fo Read more…

D-Wave to Go Public with SPAC Deal; Expects ~$1.6B Market Valuation

February 8, 2022

Quantum computing pioneer D-Wave today announced plans to go public via a SPAC (special purpose acquisition company) mechanism. D-Wave will merge with DPCM Capital in a transaction expected to produce $340 million in cash and result in a roughly $1.6 billion initial market valuation. The deal is expected to be completed in the second quarter of 2022 and the new company will be traded on the New York Stock... Read more…

Intel Announces Falcon Shores CPU-GPU Combo Architecture for 2024

February 18, 2022

Intel held its 2022 investor meeting yesterday, covering everything from the imminent Sapphire Rapids CPUs to the hotly anticipated (and delayed) Ponte Vecchio GPUs. But somewhat buried in its summary of the meeting was a new namedrop: “Falcon Shores,” described as “a new architecture that will bring x86 and Xe GPU together into a single socket.” The reveal was... Read more…

Industry Consortium Forms to Drive UCIe Chiplet Interconnect Standard

March 2, 2022

A new industry consortium aims to establish a die-to-die interconnect standard – Universal Chiplet Interconnect Express (UCIe) – in support of an open chipl Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Nvidia Acquires Software-Defined Storage Provider Excelero

March 7, 2022

Nvidia has announced that it has acquired Excelero. The high-performance block storage provider, founded in 2014, will have its technology integrated into Nvidia’s enterprise software stack. Nvidia is not disclosing the value of the deal. Excelero’s core product, Excelero NVMesh, offers software-defined block storage via networked NVMe SSDs. NVMesh operates through... Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire