The Week in HPC Research

By Nicole Hemsoth

February 21, 2013

The top research stories of the week have been hand-selected from prominent journals and leading conference proceedings. Here’s another diverse set of items, including one on GPU programming, distributed file systems, exhaustive search with parallel agents, the benefits of invasive computing, and an HPC cloud proof-of-concept.

Extending OpenMP for GPU Programming

The International Journal of Computational Science and Engineering (Volume 8, Number 1/2013) includes an interesting research item from Seyong Lee (Computer Science and Mathematics Division, Oak Ridge National Laboratory) and Rudolf Eigenmann (School of Electrical and Computer Engineering, Purdue University). The duo have developed a directive-based OpenMP extension to address programmability and tunability issues relevant to the GPGPU developer community.

GPGPU computing provides an inexpensive parallel computing platform for compute-intensive applications, yet programming complexity can challenge developers hindering more widespread adoption, the authors note. “Even though the compute unified device architecture (CUDA) programming model offers better abstraction, developing efficient GPGPU code is still complex and error–prone,” they argue.

Thus the authors propose a new programming interface, called OpenMPC, comprised of standard OpenMP and a new set of compiler directives and environment variables that have been extended for CUDA. They argue that OpenMPC, a directive–based, high–level programming model, offers better programmability and tunability for GPGPU code.

“We have developed a fully automatic compilation and user–assisted tuning system supporting OpenMPC. In addition to a range of compiler transformations and optimisations, the system includes tuning capabilities for generating, pruning, and navigating the search space of compilation variants. Evaluation using 14 applications shows that our system achieves 75% of the performance of the hand–coded CUDA programmes (92% if excluding one exceptional case),” they write.

Next >>

Six Distributed File Systems

A trio of French scientists provide a thorough analysis of six distributed file systems in this recent 39-page research paper, appearing in the HAL/INRIA open archive. The authors, one from SysFera and two from Laboratoire MIS at the Universite de Picardie Jules Verne, start with the observation that a large number of HPC applications rely on distributed computing environments to process and analyze large amounts of data. (Examples provided include probabilistic analysis, weather forecasting and aerodynamic research.) They further note the emergence of new infrastructures designed to handle the increased computational demand. Most of these new architectures, the authors assert, involve some manner of distributed computing, such that the computing process is spread among the nodes of a large distributed computing platform.

Furthermore the team believes that the growing body of scientific data will likewise necessitate innovations in distributed storage. “Easy to use and reliable storage solutions” are essential for scientific computing, they argue, and the community already has a “well-tried solution to this issue,” in the form of Distributed File Systems (DFSs).

The paper offers a comparison of six modern DFSs as to three fundamental issues: scalability, transparency and fault tolerance. For their study, the authors selected popular, widely-used and frequently updated DFSs: HDFS, MooseFS, iRODS, Ceph, GlusterFS, and Lustre.

Next >>

Exhaustive Search with Parallel Agents

In a recent paper, Macedonia researcher Toni Draganov Stojanovski from University for Information Science And Technology in the Republic of Macedonia sets out to examine the performance of exhaustive search when it is conducted with many search agents working in parallel.

Stojanovski and his research team observe that the advance of manycore processors and more sophisticated distributed processing offers more opportunities for exhaustive search via the use of multiple search agents. While there are a selection of elegant algorithms available for solving complex problems, exhaustive search remains as the best or only solution for real-life problems with no regular structure.

The paper reviews the performance that is achieved using the exhaustive search approach in conjunction with several different search agents with special attention to the following parameters:

• Differences in speeds of search agents.

• Length of allocated search subregions.

• Type of communication between central server and agents.

The findings reveal that the performance of the search improves with the increase in the level of mutual assistance between agents. Furthermore, nearly identical performance outcomes can be achieved with homogeneous and heterogeneous search agents as long as “the lengths of subregions allocated to individual search regions follow the differences in the speeds of heterogeneous search agents.” The research team also demonstrate how to achieve the optimum search performance by means of increasing the dimension of the search region.

The work appears in the January issue of the Turkish Journal of Electrical Engineering & Computer Sciences.

Next >>

The Benefits of Invasive Computing

In their paper, titled Invasive Computing on High Performance Shared Memory Systems, three researchers from the Department of Informatics, at Garching, Germany, offer new approaches for improving the throughput of runtime-adaptive applications on cutting-edge HPC systems. Their work was published as a chapter in Facing the Multicore Challenge III.

According to the team, there are multiple issues at play:

A first issue is the, in general, missing information about the actual impact of unforeseeable workload by adaptivity and of the unknown number of time steps or iterations on the runtime of adaptive applications. Another issue is that resource scheduling on HPC systems is currently done before an application is started and remains unchanged afterwards, even in case of varying requirements. Furthermore, an application cannot be started after another running application allocated all resources.

The authors propose a solution that involves the design of algorithms that adapt their use of resources during runtime, e.g., by relinquishing or adding compute cores. In the event that concurrent applications are competing for resources, they recommend that an appropriate resource management solution be adopted.

To improve the throughput of runtime-adaptive applications, the computer scientists employed invasive paradigms that start applications and schedule resources during runtime. Scheduling work can be achieved through the use of a global resource manager, and scalability graphs help improve load balancing of multiple applications. In the case of adaptive simulations, several scalability graphs are employed.

The paper includes a proof-of-concept that demonstrates runtime/throughput results for a fully adaptive shallow-water simulation.

Next >>

Easy to Use Cloud Service

Among the many HPC cloud research pieces that were published this week was an Australian endeavor that seeks to transform complicated HPC applications into easy-to-use SaaS cloud services. Researchers Adam K.L. Wonga and Andrzej M. Goscinskia from the School of Information Technology at Deakin University in Australia set out to develop and test a unified framework for HPC applications as services in clouds.

The duo acknowledge the benefits of HPC cloud. Scalable, affordable and accessible on demand, the use of HPC resources in a cloud environment have been a natural fit for many scientific disciplines, including biology, medicine, chemistry, they write. Still they have observed a steep learning curve when it comes to preparing for and deploying HPC applications in the cloud. This they say has stood in the way of many innovative HPC-backed discoveries.

To remedy this situation and improve ease of use and access to HPC resources, the researchers are looking to the world of Web-based tools, but as they write “high-performance computational research are both unique and complex, which make the development of web-based tools for this research difficult.”

The paper describes their approach to developing a unified cloud framework – one that makes it easier for various domain users to deploy HPC applications in public clouds as services. Their proof-of-concept integrates three components:

(i) Amazon EC2 public cloud for providing HPC infrastructure.

(ii) a HPC service software library for accessing HPC resources.

(iii) the Galaxy web-based platform for exposing and accessing HPC application services.

The authors conclude that “this new approach can reduce the time and money needed to deploy, expose and access discipline HPC applications in clouds.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This