The Week in HPC Research

By Nicole Hemsoth

February 28, 2013

The top research stories of the week have been hand-selected from prominent journals and leading conference proceedings. Here’s another diverse set of items, including lessons learned from system failures; a cross-platform OpenCL implementation; the best memory to extract GPU’s potential; innovative ideas for next-generation interconnects; and the benefits of cloud storage to HPC applications.

Learning from Failure

A recent paper [PDF] authored by Charng-Da Lu, Computational Scientist at the Center for Computational Research at SUNY at Buffalo, investigates the important topic of HPC system failures. The research team presents 8-24 months of actual failure data generated by three HPC systems at the National Center for Supercomputing Applications (NCSA).

Lu explains the impetus for the research thusly: “Continuous availability of high performance computing (HPC) systems built from commodity components have become a primary concern as system size grows to thousands of processors. To design more reliable systems, a solid understanding of failure behavior of current systems is in need.”

Learning from mistakes is essential to progress, and Lu argues that failure data analysis of HPC systems has three main goals:

1. It highlights dependability bottlenecks and serves as a guideline for designing more reliable systems.

2. Real data can be used to drive numerical evaluation of performability models and simulations, which are an essential part of reliability engineering.

3. It can be applied to predict node availability, which is useful for resource characterization and scheduling.

The analysis shows that the three systems had an availability of between 98.7-99.8%. Lu finds that most outages were caused by software halts, while downtime per outage was highest in the case of hardware halts or scheduled maintenance. His team employed failure clustering analysis to identify several correlated failures.

Next >> Box Counting Algorithm on GPU

Box Counting Algorithm on GPU and multi-core CPU

In the prestigious Journal of Supercomputing, Jesús Jiménez and Juan Ruiz de Miras from the Department of Computer Science, University of Jaén in Spain, have authored a paper recounting their work with a cross-platform OpenCL implementation of the box-counting algorithm – one of the most popular methods for estimating the Fractal Dimension.

The Fractal Dimension, they explain, is an effective, but time-consuming image analysis method used in many disciplines, including the biomedical field, environmental science, materials science and computer graphics. When it comes to the analysis of 3D images, box counting proves especially slow-going.

“Unlike parallel programming models that strictly depend on the hardware type and manufacturer, like CUDA,” the team writes. “OpenCL allows us to provide an implementation suitable for execution on both GPUs and multi-core CPUs, whatever the hardware manufacturer.”

Drawing on the work of earlier research, the authors design an OpenCL algorithm that has been specifically optimized according the type of the target device. They claim average speedups of 7.46× and 4×, when executed on the GPU and the multicore CPU respectively, compared to single-threaded (sequential) CPU implementation.

Next >> Can PCM Benefit GPU?

Can PCM Benefit GPU?

A new technical report from the College of William & Mary Department of Computer Science examines the benefits of deploying phase change memory (PCM) in tandem with GPU systems.

The seven-member research team starts with the following premise:

“Recent years have seen a rapid adoption of Graphic Processing Units (GPU) for computing beyond graphics processing. As a massively parallel architecture, GPU has demonstrated appealing energy efficiency and tremendous throughput. However, the energy efficiency of current GPU systems is still far from meeting the requirement of extreme-scale computing.”

“Can PCM Benefit GPU?” – this is the question posed by the researchers and the title of their 11-page paper [PDF]. They point to recent studies that highlight PCM’s energy efficiency potential when teamed with CPU systems that have a modest level of parallelism. But would the same benefits apply for GPU-like massively parallel systems?

The authors claim that their work is the “first systematic investigation into this question.” They conclude that promise of PCM-based memory for increasing the energy-efficiency of parallel CPU-based systems did not hold true for GPU computing. In fact, the use of PCM in tandem with GPUs significant degraded energy-efficiency. The authors pointed to a “mismatch between those designs and the massive parallelism in GPU” and further note that repairing the mismatch requires “innovations in both hardware and software support.”

Ultimately their work reconciles a hybrid memory design with GPU massive parallelism for enhanced energy efficiency. It is this design that they say yields 15.6% and 40.1% energy saving on average compared to DRAM and PCM respectively, with a performance hit of less than 3.9%.

Next >> Interconnects for Exascale

Interconnects for Exascale

As the coming generation of supercomputers reaches into exaflop-class territory, the HPC community faces fundamental challenges to the way that such systems are designed and operated. One the biggest hurdles will be powering and cooling these mammoth machines. Optical interconnects could help alleviate some of these issues and thus have been proposed as a potential exascale enabler, but they are not without challenges themselves, especially in regards to manufacturability.

The feasibility of implementing chip-to-board interconnects for high-performance computing is discussed in a recent paper published in the Feb. 22, 2013 edition of Proceedings of SPIE. Written by a team of European researchers, the paper makes the case for integrating optical interconnect technologies into the module and chip level.

The researchers argue that “the introduction of optical links into High Performance Computing (HPC) could be an option to allow scaling the manufacturing technology to large volume manufacturing. This will drive the need for manufacturability of optical interconnects, giving rise to other challenges that add to the realization of this type of interconnection.”

The authors envision a solution that puts optical components on the module level, integrating optical chips, laser diodes or PIN diodes as components. They note the method is analogous to constructing a surface-mount device (SMD), which has its components mounted directly onto the surface of printed circuit boards. This new class of 3-dimensional optical link is symbolic of the “fundamental paradigm shifts” that will usher in the exaflop future.

Next >> Evaluating Cloud Storage for HPC

Evaluating Cloud Storage Services for Tightly-Coupled Applications

This week’s HPC cloud item comes from a team of researchers from INRIA and Argonne National Laboratory. Their work “Evaluating Cloud Storage Services for Tightly-Coupled Applications” was published as a chapter in Euro-Par 2012: Parallel Processing Workshops.

Noting that past HPC cloud research primarily focused on performance as a way to quantify the HPC capabilities of public and private clouds, the team sets out to address the topic of data storage as it relates to traditional HPC applications.

“Tightly-coupled applications are a common class of scientific HPC applications, which exhibit specific requirements previously addressed by supercomputers,” write the authors. They’re referring to the fact that tightly-coupled applications work best when paired with a custom-tuned parallel file system (PFS). And while virtual machines can be outfitted with any file system, including PFS, the setup introduces issues around data persistency.

The research team elect to test a cloud-based storage service, and they opt for an open source platform as opposed to Amazon. They select the Nimbus Cloud framework and its S3-compatible storage service, Cumulus.

The group runs several experiments using an atmospheric modeling application running in a private Nimbus cloud. The results show that the application is able to scale with the size of the data and the number of processes (up to 144 running in parallel), while storing 50 GB of output data on the Cumulus cloud storage service.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This