The Week in HPC Research

By Nicole Hemsoth

February 28, 2013

The top research stories of the week have been hand-selected from prominent journals and leading conference proceedings. Here’s another diverse set of items, including lessons learned from system failures; a cross-platform OpenCL implementation; the best memory to extract GPU’s potential; innovative ideas for next-generation interconnects; and the benefits of cloud storage to HPC applications.

Learning from Failure

A recent paper [PDF] authored by Charng-Da Lu, Computational Scientist at the Center for Computational Research at SUNY at Buffalo, investigates the important topic of HPC system failures. The research team presents 8-24 months of actual failure data generated by three HPC systems at the National Center for Supercomputing Applications (NCSA).

Lu explains the impetus for the research thusly: “Continuous availability of high performance computing (HPC) systems built from commodity components have become a primary concern as system size grows to thousands of processors. To design more reliable systems, a solid understanding of failure behavior of current systems is in need.”

Learning from mistakes is essential to progress, and Lu argues that failure data analysis of HPC systems has three main goals:

1. It highlights dependability bottlenecks and serves as a guideline for designing more reliable systems.

2. Real data can be used to drive numerical evaluation of performability models and simulations, which are an essential part of reliability engineering.

3. It can be applied to predict node availability, which is useful for resource characterization and scheduling.

The analysis shows that the three systems had an availability of between 98.7-99.8%. Lu finds that most outages were caused by software halts, while downtime per outage was highest in the case of hardware halts or scheduled maintenance. His team employed failure clustering analysis to identify several correlated failures.

Next >> Box Counting Algorithm on GPU

Box Counting Algorithm on GPU and multi-core CPU

In the prestigious Journal of Supercomputing, Jesús Jiménez and Juan Ruiz de Miras from the Department of Computer Science, University of Jaén in Spain, have authored a paper recounting their work with a cross-platform OpenCL implementation of the box-counting algorithm – one of the most popular methods for estimating the Fractal Dimension.

The Fractal Dimension, they explain, is an effective, but time-consuming image analysis method used in many disciplines, including the biomedical field, environmental science, materials science and computer graphics. When it comes to the analysis of 3D images, box counting proves especially slow-going.

“Unlike parallel programming models that strictly depend on the hardware type and manufacturer, like CUDA,” the team writes. “OpenCL allows us to provide an implementation suitable for execution on both GPUs and multi-core CPUs, whatever the hardware manufacturer.”

Drawing on the work of earlier research, the authors design an OpenCL algorithm that has been specifically optimized according the type of the target device. They claim average speedups of 7.46× and 4×, when executed on the GPU and the multicore CPU respectively, compared to single-threaded (sequential) CPU implementation.

Next >> Can PCM Benefit GPU?

Can PCM Benefit GPU?

A new technical report from the College of William & Mary Department of Computer Science examines the benefits of deploying phase change memory (PCM) in tandem with GPU systems.

The seven-member research team starts with the following premise:

“Recent years have seen a rapid adoption of Graphic Processing Units (GPU) for computing beyond graphics processing. As a massively parallel architecture, GPU has demonstrated appealing energy efficiency and tremendous throughput. However, the energy efficiency of current GPU systems is still far from meeting the requirement of extreme-scale computing.”

“Can PCM Benefit GPU?” – this is the question posed by the researchers and the title of their 11-page paper [PDF]. They point to recent studies that highlight PCM’s energy efficiency potential when teamed with CPU systems that have a modest level of parallelism. But would the same benefits apply for GPU-like massively parallel systems?

The authors claim that their work is the “first systematic investigation into this question.” They conclude that promise of PCM-based memory for increasing the energy-efficiency of parallel CPU-based systems did not hold true for GPU computing. In fact, the use of PCM in tandem with GPUs significant degraded energy-efficiency. The authors pointed to a “mismatch between those designs and the massive parallelism in GPU” and further note that repairing the mismatch requires “innovations in both hardware and software support.”

Ultimately their work reconciles a hybrid memory design with GPU massive parallelism for enhanced energy efficiency. It is this design that they say yields 15.6% and 40.1% energy saving on average compared to DRAM and PCM respectively, with a performance hit of less than 3.9%.

Next >> Interconnects for Exascale

Interconnects for Exascale

As the coming generation of supercomputers reaches into exaflop-class territory, the HPC community faces fundamental challenges to the way that such systems are designed and operated. One the biggest hurdles will be powering and cooling these mammoth machines. Optical interconnects could help alleviate some of these issues and thus have been proposed as a potential exascale enabler, but they are not without challenges themselves, especially in regards to manufacturability.

The feasibility of implementing chip-to-board interconnects for high-performance computing is discussed in a recent paper published in the Feb. 22, 2013 edition of Proceedings of SPIE. Written by a team of European researchers, the paper makes the case for integrating optical interconnect technologies into the module and chip level.

The researchers argue that “the introduction of optical links into High Performance Computing (HPC) could be an option to allow scaling the manufacturing technology to large volume manufacturing. This will drive the need for manufacturability of optical interconnects, giving rise to other challenges that add to the realization of this type of interconnection.”

The authors envision a solution that puts optical components on the module level, integrating optical chips, laser diodes or PIN diodes as components. They note the method is analogous to constructing a surface-mount device (SMD), which has its components mounted directly onto the surface of printed circuit boards. This new class of 3-dimensional optical link is symbolic of the “fundamental paradigm shifts” that will usher in the exaflop future.

Next >> Evaluating Cloud Storage for HPC

Evaluating Cloud Storage Services for Tightly-Coupled Applications

This week’s HPC cloud item comes from a team of researchers from INRIA and Argonne National Laboratory. Their work “Evaluating Cloud Storage Services for Tightly-Coupled Applications” was published as a chapter in Euro-Par 2012: Parallel Processing Workshops.

Noting that past HPC cloud research primarily focused on performance as a way to quantify the HPC capabilities of public and private clouds, the team sets out to address the topic of data storage as it relates to traditional HPC applications.

“Tightly-coupled applications are a common class of scientific HPC applications, which exhibit specific requirements previously addressed by supercomputers,” write the authors. They’re referring to the fact that tightly-coupled applications work best when paired with a custom-tuned parallel file system (PFS). And while virtual machines can be outfitted with any file system, including PFS, the setup introduces issues around data persistency.

The research team elect to test a cloud-based storage service, and they opt for an open source platform as opposed to Amazon. They select the Nimbus Cloud framework and its S3-compatible storage service, Cumulus.

The group runs several experiments using an atmospheric modeling application running in a private Nimbus cloud. The results show that the application is able to scale with the size of the data and the number of processes (up to 144 running in parallel), while storing 50 GB of output data on the Cumulus cloud storage service.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This