Utility Supercomputing Heats Up

By Tiffany Trader

February 28, 2013

The HPC in the cloud space continues to evolve and one of the companies leading that charge is Cycle Computing. The utility supercomputing vendor recently reported a record-breaking 2012, punctuated by several impressive big science endeavors. One of Cycle’s most significant projects was the creation of a 50,000-core utility supercomputer inside the Amazon Elastic Compute Cloud.

Built for pharmaceutical companies Schrödinger and Nimbus Discovery, the virtual mega-cluster was able to analyze 21 million drug compounds in just 3 hours for less than $4,900 per hour. The accomplishment caught the attention of IDC analysts Chirag Dekate and Steve Conway, who elected to honor Cycle with their firm’s HPC Innovation Excellence Award.

Research Manager of IDC’s High-Performance Systems Chirag Dekate explained the award recognizes those who have best applied HPC in the ecosystem to solve critical problems. More specifically, IDC is looking for scientific achievement, ROI, and a combination of these two elements.

HPCwire spoke with Cycle CEO Jason Stowe shortly after the award was announced about the growth in HPC cloud and his company. Stowe really sees 2012 as the turning point – both for the space and for Cycle Computing. “We’ve basically hit the hockey stick growth period where there’s more rapid adoption of the technology,” he says. “Relative to utility supercomputing and HPC cloud in general we are definitely seeing a lot of interest in the space.”

During the Amazon Web Services re:Invent show in November, some big-name customers, including Novartis, Johnson & Johnson, Life Technologies, along with Hartford Insurance Group and Pacific Life Insurance, came forward to discuss their use of Cycle’s cluster-building software. The companies highlighted many of their biggest use cases and described how HPC cloud helps move the needle for Fortune500.

“Utility supercomputing applies to a large variety of companies regardless of their industry,” says Stowe, “because it supports business analytics, it supports various forms of engineering simulations and helps get the science done.”

Cycle’s customer base is well-represented across disciplines. “The majority of the top 20 big pharma companies use our software; three of the five largest variable annuity businesses use our software internally and externally or in combination,” says the CEO. The vendor also counts several leading life science companies among its customer base, including Schrödinger, who in addition to their initial 50k core run, continues to use the Cycle-EC2 cluster for ongoing workloads. Manufacturing and energy companies are also plugging into the Cycle cloud.

There are still technical and cultural barriers to cloud adoption, however. Stowe concedes the point, but only half-jokingly he adds that Cycle has solved most of the technical challenges. At this juncture, he believes the lag is more on cultural side, but there are signs of progress.

“We have these traditional companies like Johnson & Johnson and Hartford Life transitioning to a cloud model. That’s a huge cultural indicator, and definitely a C-change from four-to-five years ago,” he says.

Next >> the Business Model

The Business Model

What about the long-term profit potential for a business that relies on data parallel workloads? The question is met with a three-part answer. First off, Stowe says that Cycle has always been profitable. As a bootstrapped company, they have no investors. They’ve built a business off of a real cash-flow stream. Second, he insists that the vast amount of growth in computation is in the area of data-parallel applications.

He considers business analytics, the entirety of big data and a majority of even traditional simulation codes to be strong candidates for the cloud or utility supercomputing model.

“Sure, people still use MPI, they still use fast interconnect – but we have cases (and we hope to publish soon) where folks are running Monte Carlo simulations as a data-parallel problem. There’s a small MPI cluster that’s running the simulation, but the overall structure of the computation is parallel,” says Stowe.

Stowe expects these kinds of data-parallel or high-throughput applications to make up the bulk of new commercial workloads. The activity is coming from a range of verticals: genomics, computational chemistry, even finite element analysis.

Stowe’s final point in the context of MPI applications might be surprising to some. Cycle has seen at least two examples of real-world MPI applications that ran as much as 40 percent better on the Amazon EC2 cloud than on an internal kit that used QDR InfiniBand.

“The only real test of whether or not cloud is right for you is to actually bench it in comparison to the kit you are using in-house,” he advises.

Stowe’s team was not particularly surprised. “A lot of MPI applications under the hood are essentially doing low-interconnect, master-worker kind of workloads,” he adds.

Stowe readily admits there are applications that require the fastest interconnects and highly-tuned systems – “like weather simulations, nuclear bomb testing, the stuff at Oak Ridge or Sandia” – but he contends that some of the newer applications, especially those written in-house or by a domain scientist as opposed to a computer scientist, often run faster on cloud.

“It’s so cheap to do a bench, so why not just verify it. I’m an engineer at heart, so I’m very practical. We can talk about the theory, but it’s hard to argue with results,” he adds.

Next >> Another Tool in the Toolbox

Another Tool in the Toolbox

So much of the discussion around HPC cloud focuses on the so-called I/O problem – the bandwidth and latency challenges associated with a general public cloud like Amazon. “What about performance?” critics will ask.

Stowe feels that questions like this point to cloud necessarily replacing large capability machines, but that’s not how he sees it.

“I think of it as a radically different kind of capability machine,” says Stowe. “The old kind of capability machine required millions of dollars and tons of planning and special environments to be created, heating/cooling/power, expert staff, and so on. These systems are used very heavily for a certain kind of application, and that’s the right thing to do.”

Stowe looks at utility supercomputing as another tool in the toolbox. It doesn’t need to replace traditional capability machines, which will still be needed for certain kinds of applications. In fact, he says you can think of the Cycle-AWS cloud as another kind of capability machine with an attractive set of benefits (on-demand, pay for what you use, scalable, elastic, lower overhead).

It’s a different branch of the same tree, he says.

IDC’s Dekate takes pretty much the same position. He sees HPC in the cloud and dedicated HPC clusters as complementary.

“The HPC ecosystem is diverse and there’s a class of applications that makes sense for utility supercomputing,” says Dekate. “Solving the diverse needs of the user community requires different kinds of technological capabilities, including dedicated hardware infrastructure and HPC cloud frameworks. Our argument is that one does not have to replace the other. It’s more important to find the right kind of matches for applications that work well in either or both of these cases.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed. Speaking Read more…

By Doug Black

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This