Utility Supercomputing Heats Up

By Tiffany Trader

February 28, 2013

The HPC in the cloud space continues to evolve and one of the companies leading that charge is Cycle Computing. The utility supercomputing vendor recently reported a record-breaking 2012, punctuated by several impressive big science endeavors. One of Cycle’s most significant projects was the creation of a 50,000-core utility supercomputer inside the Amazon Elastic Compute Cloud.

Built for pharmaceutical companies Schrödinger and Nimbus Discovery, the virtual mega-cluster was able to analyze 21 million drug compounds in just 3 hours for less than $4,900 per hour. The accomplishment caught the attention of IDC analysts Chirag Dekate and Steve Conway, who elected to honor Cycle with their firm’s HPC Innovation Excellence Award.

Research Manager of IDC’s High-Performance Systems Chirag Dekate explained the award recognizes those who have best applied HPC in the ecosystem to solve critical problems. More specifically, IDC is looking for scientific achievement, ROI, and a combination of these two elements.

HPCwire spoke with Cycle CEO Jason Stowe shortly after the award was announced about the growth in HPC cloud and his company. Stowe really sees 2012 as the turning point – both for the space and for Cycle Computing. “We’ve basically hit the hockey stick growth period where there’s more rapid adoption of the technology,” he says. “Relative to utility supercomputing and HPC cloud in general we are definitely seeing a lot of interest in the space.”

During the Amazon Web Services re:Invent show in November, some big-name customers, including Novartis, Johnson & Johnson, Life Technologies, along with Hartford Insurance Group and Pacific Life Insurance, came forward to discuss their use of Cycle’s cluster-building software. The companies highlighted many of their biggest use cases and described how HPC cloud helps move the needle for Fortune500.

“Utility supercomputing applies to a large variety of companies regardless of their industry,” says Stowe, “because it supports business analytics, it supports various forms of engineering simulations and helps get the science done.”

Cycle’s customer base is well-represented across disciplines. “The majority of the top 20 big pharma companies use our software; three of the five largest variable annuity businesses use our software internally and externally or in combination,” says the CEO. The vendor also counts several leading life science companies among its customer base, including Schrödinger, who in addition to their initial 50k core run, continues to use the Cycle-EC2 cluster for ongoing workloads. Manufacturing and energy companies are also plugging into the Cycle cloud.

There are still technical and cultural barriers to cloud adoption, however. Stowe concedes the point, but only half-jokingly he adds that Cycle has solved most of the technical challenges. At this juncture, he believes the lag is more on cultural side, but there are signs of progress.

“We have these traditional companies like Johnson & Johnson and Hartford Life transitioning to a cloud model. That’s a huge cultural indicator, and definitely a C-change from four-to-five years ago,” he says.

Next >> the Business Model

The Business Model

What about the long-term profit potential for a business that relies on data parallel workloads? The question is met with a three-part answer. First off, Stowe says that Cycle has always been profitable. As a bootstrapped company, they have no investors. They’ve built a business off of a real cash-flow stream. Second, he insists that the vast amount of growth in computation is in the area of data-parallel applications.

He considers business analytics, the entirety of big data and a majority of even traditional simulation codes to be strong candidates for the cloud or utility supercomputing model.

“Sure, people still use MPI, they still use fast interconnect – but we have cases (and we hope to publish soon) where folks are running Monte Carlo simulations as a data-parallel problem. There’s a small MPI cluster that’s running the simulation, but the overall structure of the computation is parallel,” says Stowe.

Stowe expects these kinds of data-parallel or high-throughput applications to make up the bulk of new commercial workloads. The activity is coming from a range of verticals: genomics, computational chemistry, even finite element analysis.

Stowe’s final point in the context of MPI applications might be surprising to some. Cycle has seen at least two examples of real-world MPI applications that ran as much as 40 percent better on the Amazon EC2 cloud than on an internal kit that used QDR InfiniBand.

“The only real test of whether or not cloud is right for you is to actually bench it in comparison to the kit you are using in-house,” he advises.

Stowe’s team was not particularly surprised. “A lot of MPI applications under the hood are essentially doing low-interconnect, master-worker kind of workloads,” he adds.

Stowe readily admits there are applications that require the fastest interconnects and highly-tuned systems – “like weather simulations, nuclear bomb testing, the stuff at Oak Ridge or Sandia” – but he contends that some of the newer applications, especially those written in-house or by a domain scientist as opposed to a computer scientist, often run faster on cloud.

“It’s so cheap to do a bench, so why not just verify it. I’m an engineer at heart, so I’m very practical. We can talk about the theory, but it’s hard to argue with results,” he adds.

Next >> Another Tool in the Toolbox

Another Tool in the Toolbox

So much of the discussion around HPC cloud focuses on the so-called I/O problem – the bandwidth and latency challenges associated with a general public cloud like Amazon. “What about performance?” critics will ask.

Stowe feels that questions like this point to cloud necessarily replacing large capability machines, but that’s not how he sees it.

“I think of it as a radically different kind of capability machine,” says Stowe. “The old kind of capability machine required millions of dollars and tons of planning and special environments to be created, heating/cooling/power, expert staff, and so on. These systems are used very heavily for a certain kind of application, and that’s the right thing to do.”

Stowe looks at utility supercomputing as another tool in the toolbox. It doesn’t need to replace traditional capability machines, which will still be needed for certain kinds of applications. In fact, he says you can think of the Cycle-AWS cloud as another kind of capability machine with an attractive set of benefits (on-demand, pay for what you use, scalable, elastic, lower overhead).

It’s a different branch of the same tree, he says.

IDC’s Dekate takes pretty much the same position. He sees HPC in the cloud and dedicated HPC clusters as complementary.

“The HPC ecosystem is diverse and there’s a class of applications that makes sense for utility supercomputing,” says Dekate. “Solving the diverse needs of the user community requires different kinds of technological capabilities, including dedicated hardware infrastructure and HPC cloud frameworks. Our argument is that one does not have to replace the other. It’s more important to find the right kind of matches for applications that work well in either or both of these cases.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series and timeliness in general, according to Paul Morin, directo Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic markets. Skylake will carry Intel's flag in the fight for le Read more…

By Doug Black

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Perverse Incentives? How Economics (Mis-)shaped Academic Science

July 12, 2017

The unintended consequences of how we fund academic research—in the U.S. and elsewhere—are strangling innovation, putting universities into debt and creatin Read more…

By Ken Chiacchia, Senior Science Writer, Pittsburgh Supercomputing Center

Why Tech is Failing at Diversity and How It Can Succeed

July 11, 2017

The sectors that are supposed to be all about innovation and the future continue to fail spectacularly at gender equity and diversity. UK, US and Canada still haven’t managed to break the average 20 percent threshold for gender equity across STEM academic disciplines. Read more…

By Kelly Nolan

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This