Utility Supercomputing Heats Up

By Nicole Hemsoth

February 28, 2013

The HPC in the cloud space continues to evolve and one of the companies leading that charge is Cycle Computing. The utility supercomputing vendor recently reported a record-breaking 2012, punctuated by several impressive big science endeavors. One of Cycle’s most significant projects was the creation of a 50,000-core utility supercomputer inside the Amazon Elastic Compute Cloud.

Built for pharmaceutical companies Schrödinger and Nimbus Discovery, the virtual mega-cluster was able to analyze 21 million drug compounds in just 3 hours for less than $4,900 per hour. The accomplishment caught the attention of IDC analysts Chirag Dekate and Steve Conway, who elected to honor Cycle with their firm’s HPC Innovation Excellence Award.

Research Manager of IDC’s High-Performance Systems Chirag Dekate explained the award recognizes those who have best applied HPC in the ecosystem to solve critical problems. More specifically, IDC is looking for scientific achievement, ROI, and a combination of these two elements.

HPCwire spoke with Cycle CEO Jason Stowe shortly after the award was announced about the growth in HPC cloud and his company. Stowe really sees 2012 as the turning point – both for the space and for Cycle Computing. “We’ve basically hit the hockey stick growth period where there’s more rapid adoption of the technology,” he says. “Relative to utility supercomputing and HPC cloud in general we are definitely seeing a lot of interest in the space.”

During the Amazon Web Services re:Invent show in November, some big-name customers, including Novartis, Johnson & Johnson, Life Technologies, along with Hartford Insurance Group and Pacific Life Insurance, came forward to discuss their use of Cycle’s cluster-building software. The companies highlighted many of their biggest use cases and described how HPC cloud helps move the needle for Fortune500.

“Utility supercomputing applies to a large variety of companies regardless of their industry,” says Stowe, “because it supports business analytics, it supports various forms of engineering simulations and helps get the science done.”

Cycle’s customer base is well-represented across disciplines. “The majority of the top 20 big pharma companies use our software; three of the five largest variable annuity businesses use our software internally and externally or in combination,” says the CEO. The vendor also counts several leading life science companies among its customer base, including Schrödinger, who in addition to their initial 50k core run, continues to use the Cycle-EC2 cluster for ongoing workloads. Manufacturing and energy companies are also plugging into the Cycle cloud.

There are still technical and cultural barriers to cloud adoption, however. Stowe concedes the point, but only half-jokingly he adds that Cycle has solved most of the technical challenges. At this juncture, he believes the lag is more on cultural side, but there are signs of progress.

“We have these traditional companies like Johnson & Johnson and Hartford Life transitioning to a cloud model. That’s a huge cultural indicator, and definitely a C-change from four-to-five years ago,” he says.

Next >> the Business Model

The Business Model

What about the long-term profit potential for a business that relies on data parallel workloads? The question is met with a three-part answer. First off, Stowe says that Cycle has always been profitable. As a bootstrapped company, they have no investors. They’ve built a business off of a real cash-flow stream. Second, he insists that the vast amount of growth in computation is in the area of data-parallel applications.

He considers business analytics, the entirety of big data and a majority of even traditional simulation codes to be strong candidates for the cloud or utility supercomputing model.

“Sure, people still use MPI, they still use fast interconnect – but we have cases (and we hope to publish soon) where folks are running Monte Carlo simulations as a data-parallel problem. There’s a small MPI cluster that’s running the simulation, but the overall structure of the computation is parallel,” says Stowe.

Stowe expects these kinds of data-parallel or high-throughput applications to make up the bulk of new commercial workloads. The activity is coming from a range of verticals: genomics, computational chemistry, even finite element analysis.

Stowe’s final point in the context of MPI applications might be surprising to some. Cycle has seen at least two examples of real-world MPI applications that ran as much as 40 percent better on the Amazon EC2 cloud than on an internal kit that used QDR InfiniBand.

“The only real test of whether or not cloud is right for you is to actually bench it in comparison to the kit you are using in-house,” he advises.

Stowe’s team was not particularly surprised. “A lot of MPI applications under the hood are essentially doing low-interconnect, master-worker kind of workloads,” he adds.

Stowe readily admits there are applications that require the fastest interconnects and highly-tuned systems – “like weather simulations, nuclear bomb testing, the stuff at Oak Ridge or Sandia” – but he contends that some of the newer applications, especially those written in-house or by a domain scientist as opposed to a computer scientist, often run faster on cloud.

“It’s so cheap to do a bench, so why not just verify it. I’m an engineer at heart, so I’m very practical. We can talk about the theory, but it’s hard to argue with results,” he adds.

Next >> Another Tool in the Toolbox

Another Tool in the Toolbox

So much of the discussion around HPC cloud focuses on the so-called I/O problem – the bandwidth and latency challenges associated with a general public cloud like Amazon. “What about performance?” critics will ask.

Stowe feels that questions like this point to cloud necessarily replacing large capability machines, but that’s not how he sees it.

“I think of it as a radically different kind of capability machine,” says Stowe. “The old kind of capability machine required millions of dollars and tons of planning and special environments to be created, heating/cooling/power, expert staff, and so on. These systems are used very heavily for a certain kind of application, and that’s the right thing to do.”

Stowe looks at utility supercomputing as another tool in the toolbox. It doesn’t need to replace traditional capability machines, which will still be needed for certain kinds of applications. In fact, he says you can think of the Cycle-AWS cloud as another kind of capability machine with an attractive set of benefits (on-demand, pay for what you use, scalable, elastic, lower overhead).

It’s a different branch of the same tree, he says.

IDC’s Dekate takes pretty much the same position. He sees HPC in the cloud and dedicated HPC clusters as complementary.

“The HPC ecosystem is diverse and there’s a class of applications that makes sense for utility supercomputing,” says Dekate. “Solving the diverse needs of the user community requires different kinds of technological capabilities, including dedicated hardware infrastructure and HPC cloud frameworks. Our argument is that one does not have to replace the other. It’s more important to find the right kind of matches for applications that work well in either or both of these cases.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This