XPRESS Route to Exascale

By Nicole Hemsoth

February 28, 2013

In the world of supercomputers, where the top machines can cost upwards of $100 million, $1.1 million may not sound like much. To Thomas Sterling, chief scientist at the Center for Research in Extreme Scale Computing (CREST) at Indiana University, it’s a sum that will go a long way toward funding his favorite project.

The Department of Energy awarded that amount to Indiana University’s CREST last week to fund three years of work on the XPRESS (eXascale Programming Environment and System Software) project. CREST is collaborating with work going on simultaneously at Sandia National Laboratories and several other universities and research labs. The overall goal is to enable the creation of exascale computers.

HPCwire caught up with Sterling to discuss his role in the endeavor and what it means. As usual, he has some bold and controversial opinions on the future of supercomputing.

XPRESS, based on the ParalleX parallel computation model, is being designed to enable highly parallel processing. Collectively, the work being coordinated at Sandia, according to Sterling, represents “the single most important program in high performance computing that there is.”

CREST Team
From left to right: Executive Associate Director Thomas Sterling, Director Andrew Lumsdaine, and Associate Director of Strategy Craig Stewart

Sterling’s team at CREST, which is not yet 18 months old, is working on a unique new type of runtime environment, a dynamic system that will enable the software to automatically reallocate compute tasks over time. It will be self-correcting; detecting when processor cores are sitting idle and assigning them new tasks on the fly rather than sticking to the routines established by the human programmer, the compiler and the load time system. When it detects idle processors, it should be able to make adjustments on the order of a millisecond, or even a microsecond.

Sterling believes such a system could provide a dramatic improvement in the efficiency of supercomputers. Benchmarks such as Linpack or Highly Parallel Linpack don’t always represent the real world. When even the most powerful supercomputers are running real and very complex applications, such as multi-scale, multi-physics applications, the efficiency may be as high as 70% or as low as 3%, he says. “You’ll see that the efficiencies are often well below 10%,” he adds. “You find yourself throwing away 90% of the computer.”

Sterling acknowledges that others disagree with his approach. While other prominent research teams are working on improving the popular MPI (Message Passing Interface) to create a parallel processing system, Sterling has doubts about how far that kind of work can go. While a programmer can divide tasks among many different cores with MPI, the gains are limited because each task takes a different amount of time to complete. That requires setting up global barriers that keep each core from moving on to the next task until all the other cores have completed their tasks. A lot of cores, therefore, are sitting idle at any one time.

That works fine for many HPC programs; those in which the tasks are regular, even and coarse-grained, he says. There are plenty of such tasks in HPC, and MPI has been a big success as a result. But Sterling believes it is no longer sufficient to usher in the era of exascale. Complex scientific calculations are usually highly non-linear and the processing time of different cores can vary dramatically.

Next >>

Sterling believes that it’s not always necessary to use global barriers. Not every core needs to wait for all the tasks on all the other cores to finish. The cores that finish last are the ones that need the data from all the other cores before finishing their own tasks Every other core sits idly by to wait for them to catch up and release the barrier. The idle cores could be working on new tasks if they weren’t held back by the barrier, waiting for the last cores, whose data they don’t need, to catch up.

An example comes from climate modeling, where the researcher is studying changes in temperature over the ocean. The model has to take into account a lot of different variables, such as energy and mass transfer, different chemistries in the ocean, solar radiation, and the transfer of energy from the boundary areas of the water. It also has to take into account highly irregular coastlines, islands, or the distribution of ice. But when studying a cross-section of a grid over the ocean, it’s not necessary to wait for all the calculations to be completed for every section of the grid before moving on to the next task. One grid in the middle of the Atlantic is only going to be affected by areas within tens or hundreds of kilometers, not by sections in the Pacific. Some of the calculations do not need to wait for the entire set of processors to finish.

The problem is that it’s virtually impossible for the programmer to figure out in advance all the permutations of tasks and cores that would move things along more rapidly. That’s where the ParalleX execution model comes in. Dynamic modeling means that the system can automatically detect when tasks are finished and cores are sitting idle. It can then assign new tasks to those cores. Everything still needs to be synchronized at certain points, but ParalleX sets up many smaller barriers rather than one global barrier.

Sterling has a lot of confidence in the work at CREST, which is devising a new software stack that will insert an XPRESS layer into the X-Stack system. But just creating a plug-in stack layer is not sufficient. CREST’s work is being done in conjunction with Sandia’s light weight kernel operating system, integrating them tightly together. “We’re able to redefine the OS and the runtime system jointly, which creates a whole new protocol, a whole new relationship between those two pieces of software,” he says.

Where his work goes further than other efforts as parallelism, he adds, is moving beyond an ad-hoc approach to an integrated system.

“We redefine the execution model so these things stop being hacks, stop being patches and they start being something of a comprehensive or a coherent, complete paradigm,” he says. “We feel it’s very important that everything be designed within the context and scope of everything else so it all makes sense. That will create a whole new ability to dialog between the two software layers.”

How much improvement can this approach offer? Theoretically the combined project could increase efficiency by a factor of 20. So far, his tests have managed to increase efficiency by a factor of two.

Might it be better to just figure out how to evolve MPI to do the same kind of thing? Sterling acknowledges that it might, but ultimately he doubts if that approach will be able to make the leap forward in parallelism that’s needed. He compares it to punctuated equilibrium in evolutionary biology. Evolution is not always gradual change; sometimes it encounters a rapidly changing environment and must adapt quickly.

Sterling believes we’re at such a point today. “It’s not just because of big data, although that’s the big thing right now,” he says. More importantly, he says, the big need is for dynamic graph structures. Climate modeling, for example, is a hugely complex problem that requires more than a two-dimensional approach. Accounting for hurricanes and other phenomena in oceans requires a z-axis. Industrial design, microbiology, and controlled fusion are also deep, highly non-linear problems that need solving with dynamic graphs. This kind of parallelism is key to the future of HPC, not just for number crunching, he says, but for “HPC symbolic information, which means knowledge management and understanding by machines.”

While the overall program is officially dedicated to creating exascale computing, Sterling believes it could prove its importance much sooner than that. He refers to the need for “extreme scale” computing, not exascale, which is an arbitrary benchmark. A lot of progress can be made along the way. Getting to exascale represents in increase in compute power of two orders of magnitude from today’s best supercomputers. But one order of magnitude or less would go a long way to improving materials science, industrial design, microbiology and what he sees as the most important need for the 21st century, controlled fusion. Supercomputers are already showing limitations for some of the kinds of scientific programming people want to do.

“You don’t have to wait until the end of the decade to worry about exascale,” he says. “The challenge is today, not some far future challenge. We are losing today and we need new methods today.”

He believes he has a good chance of meeting that challenge. And that makes him very happy. “There will be nothing like it,” he says. “I find it very exciting.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the General Chair of SC19 -- is an ACM Distinguished Scientist. Read more…

By HPCwire Editorial Team

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

AI and Enterprise Datacenters Boost HPC Server Revenues Past Expectations – Hyperion

April 9, 2019

Building on the big year of 2017 and spurred in part by the convergence of AI and HPC, global revenue for high performance servers jumped 15.6 percent last year Read more…

By Doug Black

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This