XPRESS Route to Exascale

By Nicole Hemsoth

February 28, 2013

In the world of supercomputers, where the top machines can cost upwards of $100 million, $1.1 million may not sound like much. To Thomas Sterling, chief scientist at the Center for Research in Extreme Scale Computing (CREST) at Indiana University, it’s a sum that will go a long way toward funding his favorite project.

The Department of Energy awarded that amount to Indiana University’s CREST last week to fund three years of work on the XPRESS (eXascale Programming Environment and System Software) project. CREST is collaborating with work going on simultaneously at Sandia National Laboratories and several other universities and research labs. The overall goal is to enable the creation of exascale computers.

HPCwire caught up with Sterling to discuss his role in the endeavor and what it means. As usual, he has some bold and controversial opinions on the future of supercomputing.

XPRESS, based on the ParalleX parallel computation model, is being designed to enable highly parallel processing. Collectively, the work being coordinated at Sandia, according to Sterling, represents “the single most important program in high performance computing that there is.”

CREST Team
From left to right: Executive Associate Director Thomas Sterling, Director Andrew Lumsdaine, and Associate Director of Strategy Craig Stewart

Sterling’s team at CREST, which is not yet 18 months old, is working on a unique new type of runtime environment, a dynamic system that will enable the software to automatically reallocate compute tasks over time. It will be self-correcting; detecting when processor cores are sitting idle and assigning them new tasks on the fly rather than sticking to the routines established by the human programmer, the compiler and the load time system. When it detects idle processors, it should be able to make adjustments on the order of a millisecond, or even a microsecond.

Sterling believes such a system could provide a dramatic improvement in the efficiency of supercomputers. Benchmarks such as Linpack or Highly Parallel Linpack don’t always represent the real world. When even the most powerful supercomputers are running real and very complex applications, such as multi-scale, multi-physics applications, the efficiency may be as high as 70% or as low as 3%, he says. “You’ll see that the efficiencies are often well below 10%,” he adds. “You find yourself throwing away 90% of the computer.”

Sterling acknowledges that others disagree with his approach. While other prominent research teams are working on improving the popular MPI (Message Passing Interface) to create a parallel processing system, Sterling has doubts about how far that kind of work can go. While a programmer can divide tasks among many different cores with MPI, the gains are limited because each task takes a different amount of time to complete. That requires setting up global barriers that keep each core from moving on to the next task until all the other cores have completed their tasks. A lot of cores, therefore, are sitting idle at any one time.

That works fine for many HPC programs; those in which the tasks are regular, even and coarse-grained, he says. There are plenty of such tasks in HPC, and MPI has been a big success as a result. But Sterling believes it is no longer sufficient to usher in the era of exascale. Complex scientific calculations are usually highly non-linear and the processing time of different cores can vary dramatically.

Next >>

Sterling believes that it’s not always necessary to use global barriers. Not every core needs to wait for all the tasks on all the other cores to finish. The cores that finish last are the ones that need the data from all the other cores before finishing their own tasks Every other core sits idly by to wait for them to catch up and release the barrier. The idle cores could be working on new tasks if they weren’t held back by the barrier, waiting for the last cores, whose data they don’t need, to catch up.

An example comes from climate modeling, where the researcher is studying changes in temperature over the ocean. The model has to take into account a lot of different variables, such as energy and mass transfer, different chemistries in the ocean, solar radiation, and the transfer of energy from the boundary areas of the water. It also has to take into account highly irregular coastlines, islands, or the distribution of ice. But when studying a cross-section of a grid over the ocean, it’s not necessary to wait for all the calculations to be completed for every section of the grid before moving on to the next task. One grid in the middle of the Atlantic is only going to be affected by areas within tens or hundreds of kilometers, not by sections in the Pacific. Some of the calculations do not need to wait for the entire set of processors to finish.

The problem is that it’s virtually impossible for the programmer to figure out in advance all the permutations of tasks and cores that would move things along more rapidly. That’s where the ParalleX execution model comes in. Dynamic modeling means that the system can automatically detect when tasks are finished and cores are sitting idle. It can then assign new tasks to those cores. Everything still needs to be synchronized at certain points, but ParalleX sets up many smaller barriers rather than one global barrier.

Sterling has a lot of confidence in the work at CREST, which is devising a new software stack that will insert an XPRESS layer into the X-Stack system. But just creating a plug-in stack layer is not sufficient. CREST’s work is being done in conjunction with Sandia’s light weight kernel operating system, integrating them tightly together. “We’re able to redefine the OS and the runtime system jointly, which creates a whole new protocol, a whole new relationship between those two pieces of software,” he says.

Where his work goes further than other efforts as parallelism, he adds, is moving beyond an ad-hoc approach to an integrated system.

“We redefine the execution model so these things stop being hacks, stop being patches and they start being something of a comprehensive or a coherent, complete paradigm,” he says. “We feel it’s very important that everything be designed within the context and scope of everything else so it all makes sense. That will create a whole new ability to dialog between the two software layers.”

How much improvement can this approach offer? Theoretically the combined project could increase efficiency by a factor of 20. So far, his tests have managed to increase efficiency by a factor of two.

Might it be better to just figure out how to evolve MPI to do the same kind of thing? Sterling acknowledges that it might, but ultimately he doubts if that approach will be able to make the leap forward in parallelism that’s needed. He compares it to punctuated equilibrium in evolutionary biology. Evolution is not always gradual change; sometimes it encounters a rapidly changing environment and must adapt quickly.

Sterling believes we’re at such a point today. “It’s not just because of big data, although that’s the big thing right now,” he says. More importantly, he says, the big need is for dynamic graph structures. Climate modeling, for example, is a hugely complex problem that requires more than a two-dimensional approach. Accounting for hurricanes and other phenomena in oceans requires a z-axis. Industrial design, microbiology, and controlled fusion are also deep, highly non-linear problems that need solving with dynamic graphs. This kind of parallelism is key to the future of HPC, not just for number crunching, he says, but for “HPC symbolic information, which means knowledge management and understanding by machines.”

While the overall program is officially dedicated to creating exascale computing, Sterling believes it could prove its importance much sooner than that. He refers to the need for “extreme scale” computing, not exascale, which is an arbitrary benchmark. A lot of progress can be made along the way. Getting to exascale represents in increase in compute power of two orders of magnitude from today’s best supercomputers. But one order of magnitude or less would go a long way to improving materials science, industrial design, microbiology and what he sees as the most important need for the 21st century, controlled fusion. Supercomputers are already showing limitations for some of the kinds of scientific programming people want to do.

“You don’t have to wait until the end of the decade to worry about exascale,” he says. “The challenge is today, not some far future challenge. We are losing today and we need new methods today.”

He believes he has a good chance of meeting that challenge. And that makes him very happy. “There will be nothing like it,” he says. “I find it very exciting.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This