UberCloud HPC Experiment Readies for Round Three

By Wolfgang Gentzsch and Burak Yenier

March 5, 2013

This is an open invitation to members of our HPC, CAE, life sciences, and big data communities to join us for this third round of the UberCloud Experiment, where we will jointly apply the cloud computing services model to compute and data-intensive workloads on remote cluster computing resources.

To all industry end users, HPC experts, compute resource and software providers: The UberCloud HPC Experiment is making HPC available as a service, for everybody, on demand, at your fingertips, by exploring the end-to-end process of using remote computing resources as a service, and learning how to resolve the many roadblocks.

The HPC Experiment started in July last year with 160 organizations and 25 teams, helping industry end-users to explore access and use of remote computing resources available from HPC centers and from the cloud. Detailed results have been published in the final report and are available upon registration. Then, the second, much improved round of the experiment started last December, with more than 350 organizations and 35 teams as of today and will conclude at the end of March. Now, for round 3 starting April 1, we invite industry end-users, software providers, HPC experts, and resource providers from HPC centers and from the cloud, to join the experiment and collaboratively explore the end-to-end process of remote HPC as a Service, hands on, in 22 well-defined guided steps.

Why Are We Performing this Experiment?

In the US alone, there are over 360,000 small and medium-size manufacturers, many of them using workstations for their daily design and development work, with the need however for more computing, from time to time. Buying an expensive HPC cluster is usually not an option, and renting computing power from HPC centers or cloud service providers still comes with severe roadblocks, such as the complexity of HPC itself, intellectual property and sensitive data, lengthy and expensive data transfers, conservative software licenses, performance bottlenecks from virtualized resources, user-specific system requirements, and missing standards and lack of interoperability among different clouds. Last but not least the currently exploding numbers of different service offerings in the cloud make it difficult for engineering end-users to locate the best-suited solutions or services for their applications’ requirements.

On the other hand, by successively removing these roadblocks, the benefits of using remote computing resources are extremely attractive, for example: no lengthy procurement and acquisition cycles; shifting some budget from CAPEX to OPEX; gaining business flexibility i.e., getting additional resources on demand, from your workstation, when you need them, at your fingertips; and scaling resource usage automatically up and down according to your actual needs.

The Benefits of Participating in the Experiment

The UberCloud HPC Experiment has been designed to drastically reduce many of the barriers mentioned above. By participating in this experiment and moving their engineering or big data application onto a remote computing resource, end-users can expect several real benefits, such as:

  • A vendor independent matching platform for digital manufacturing, computational life sciences, big data, and HPC in the Cloud services.
  • No need to hunt for resources and services in the emerging and more and more crowded Cloud market, by professional match-making of end-users with suitable service providers.
  • Free, on-demand access to hardware, software, and expertise during the experiment.
  • Lowering barriers and risks for frictionless entry into HPC in the Cloud.
  • One stop “shopping” experience for resources and services.
  • Carefully tuned end-to-end, step-by-step process to accessing remote resources.
  • Learning from the best practices of other participants.
  • Gaining hands-on experience with the cloud within your own environment.
  • No-obligation. Risk free proof-of-concept: no money involved, no sensitive data transferred, no software license concerns, and the option to stay anonymous.
  • Leading the way to increasing business agility, competitiveness, and innovation.
  • Crowd sourcing by building relationships with community members, helping each other, and providing valuable feedback to optimize the platform of the experiment.
  • The beaten path of the experiment is guiding the end-user inevitably to success.
  • With participating in this experience the end-user becomes more valuable for their company.
  • Not getting left behind in the emerging world of cloud computing.
  • And finally, free access to the services directory (the interactive UberCloud Exhibit) with a growing number of engineering cloud services.

On the other hand, the list of benefits for service providers (software, resources and expertise) to participate in this experiment is similarly rich. To name a few benefits for service providers: getting immediate constructive feedback from the experiment end-users on how to fine-tune your services; gaining deeper and practical insight into a new market and service-oriented business model; risk-free no failure experimenting allowing you to improve your services during the experiment, on the fly; getting in touch with potential customers; and gaining public attention by becoming part of widely published success stories. Last but not least, all service providers are encouraged to make use of the interactive UberCloud Exhibit to present their services to the wider HPC, CAE, life sciences, and big data communities, in an interactive experience.

Teams of Round 1 and Round 2

A sampling of team names from round 1 of the experiment reflects the wide spectrum of applications: anchor bolt, resonance, radiofrequency, supersonic, liquid gas, wing flow, ship hull, cement flow, sprinkler, space capsule, car acoustics, dosimetry, weathermen, wind turbines, combustion, blood flow, chinaCFD, gas bubbles, side impact, and colombiaBio. Round 2 teams were equally varied with names such as stent simulation, medical devices, photorealistic rendering, ventilation benchmark, roof air inlet, heterogeneous human body, two-phase flow, weather and climate, Hadoop for telecoms, combustion in IC engines, biological diversity, remote viz, acoustic field, electromagnetics, noise vibration, hybrid rocket motor, drifting snow, smoke flow, heat exchanger, gas turbine, bicycle flow, genomic data analysis.

Now We Are Inviting You to Join Round 3

Round 3 will be running from April until the end of June. We are expecting about 400 organizations to form 50 new teams built around industry end-users’ applications running on remote computing resources. In addition to our current focus areas of HPC, CAE, and the life sciences we now also invite big data end users and software, services, and consulting providers to join this experiment, for the reasons that have been outlined in this article. The experiment will be conducted more formally, with more automation, and will be even more user-friendly. The 22-step end-to-end process will be better guided, and the Basecamp ‘team rooms’ for collaboration will be even more comfortable. We will also provide three levels of support: front line (within each team), 2nd level (UberCloud mentors), 3rd level (software & hardware providers), and finally further grow the interactive UberCloud Exhibit services directory.

And Finally, Why Would You Want to Join the Experiment?

In summary, there are many good reasons for joining this experiment for the next three months. Among them: HPC is complex – it is easier to tackle this complexity within our community; the barriers of entry into HPC as a Service through an experiment are low; learning by doing – experimenting without risk – no failure; becoming an active part of this growing community; exploring the end-to-end process of accessing remote computing resources; and learning how this fits into your research or business direction in the near future.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Update: Interview with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Update: Interview with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This