UberCloud HPC Experiment Readies for Round Three

By Wolfgang Gentzsch and Burak Yenier

March 5, 2013

This is an open invitation to members of our HPC, CAE, life sciences, and big data communities to join us for this third round of the UberCloud Experiment, where we will jointly apply the cloud computing services model to compute and data-intensive workloads on remote cluster computing resources.

To all industry end users, HPC experts, compute resource and software providers: The UberCloud HPC Experiment is making HPC available as a service, for everybody, on demand, at your fingertips, by exploring the end-to-end process of using remote computing resources as a service, and learning how to resolve the many roadblocks.

The HPC Experiment started in July last year with 160 organizations and 25 teams, helping industry end-users to explore access and use of remote computing resources available from HPC centers and from the cloud. Detailed results have been published in the final report and are available upon registration. Then, the second, much improved round of the experiment started last December, with more than 350 organizations and 35 teams as of today and will conclude at the end of March. Now, for round 3 starting April 1, we invite industry end-users, software providers, HPC experts, and resource providers from HPC centers and from the cloud, to join the experiment and collaboratively explore the end-to-end process of remote HPC as a Service, hands on, in 22 well-defined guided steps.

Why Are We Performing this Experiment?

In the US alone, there are over 360,000 small and medium-size manufacturers, many of them using workstations for their daily design and development work, with the need however for more computing, from time to time. Buying an expensive HPC cluster is usually not an option, and renting computing power from HPC centers or cloud service providers still comes with severe roadblocks, such as the complexity of HPC itself, intellectual property and sensitive data, lengthy and expensive data transfers, conservative software licenses, performance bottlenecks from virtualized resources, user-specific system requirements, and missing standards and lack of interoperability among different clouds. Last but not least the currently exploding numbers of different service offerings in the cloud make it difficult for engineering end-users to locate the best-suited solutions or services for their applications’ requirements.

On the other hand, by successively removing these roadblocks, the benefits of using remote computing resources are extremely attractive, for example: no lengthy procurement and acquisition cycles; shifting some budget from CAPEX to OPEX; gaining business flexibility i.e., getting additional resources on demand, from your workstation, when you need them, at your fingertips; and scaling resource usage automatically up and down according to your actual needs.

The Benefits of Participating in the Experiment

The UberCloud HPC Experiment has been designed to drastically reduce many of the barriers mentioned above. By participating in this experiment and moving their engineering or big data application onto a remote computing resource, end-users can expect several real benefits, such as:

  • A vendor independent matching platform for digital manufacturing, computational life sciences, big data, and HPC in the Cloud services.
  • No need to hunt for resources and services in the emerging and more and more crowded Cloud market, by professional match-making of end-users with suitable service providers.
  • Free, on-demand access to hardware, software, and expertise during the experiment.
  • Lowering barriers and risks for frictionless entry into HPC in the Cloud.
  • One stop “shopping” experience for resources and services.
  • Carefully tuned end-to-end, step-by-step process to accessing remote resources.
  • Learning from the best practices of other participants.
  • Gaining hands-on experience with the cloud within your own environment.
  • No-obligation. Risk free proof-of-concept: no money involved, no sensitive data transferred, no software license concerns, and the option to stay anonymous.
  • Leading the way to increasing business agility, competitiveness, and innovation.
  • Crowd sourcing by building relationships with community members, helping each other, and providing valuable feedback to optimize the platform of the experiment.
  • The beaten path of the experiment is guiding the end-user inevitably to success.
  • With participating in this experience the end-user becomes more valuable for their company.
  • Not getting left behind in the emerging world of cloud computing.
  • And finally, free access to the services directory (the interactive UberCloud Exhibit) with a growing number of engineering cloud services.

On the other hand, the list of benefits for service providers (software, resources and expertise) to participate in this experiment is similarly rich. To name a few benefits for service providers: getting immediate constructive feedback from the experiment end-users on how to fine-tune your services; gaining deeper and practical insight into a new market and service-oriented business model; risk-free no failure experimenting allowing you to improve your services during the experiment, on the fly; getting in touch with potential customers; and gaining public attention by becoming part of widely published success stories. Last but not least, all service providers are encouraged to make use of the interactive UberCloud Exhibit to present their services to the wider HPC, CAE, life sciences, and big data communities, in an interactive experience.

Teams of Round 1 and Round 2

A sampling of team names from round 1 of the experiment reflects the wide spectrum of applications: anchor bolt, resonance, radiofrequency, supersonic, liquid gas, wing flow, ship hull, cement flow, sprinkler, space capsule, car acoustics, dosimetry, weathermen, wind turbines, combustion, blood flow, chinaCFD, gas bubbles, side impact, and colombiaBio. Round 2 teams were equally varied with names such as stent simulation, medical devices, photorealistic rendering, ventilation benchmark, roof air inlet, heterogeneous human body, two-phase flow, weather and climate, Hadoop for telecoms, combustion in IC engines, biological diversity, remote viz, acoustic field, electromagnetics, noise vibration, hybrid rocket motor, drifting snow, smoke flow, heat exchanger, gas turbine, bicycle flow, genomic data analysis.

Now We Are Inviting You to Join Round 3

Round 3 will be running from April until the end of June. We are expecting about 400 organizations to form 50 new teams built around industry end-users’ applications running on remote computing resources. In addition to our current focus areas of HPC, CAE, and the life sciences we now also invite big data end users and software, services, and consulting providers to join this experiment, for the reasons that have been outlined in this article. The experiment will be conducted more formally, with more automation, and will be even more user-friendly. The 22-step end-to-end process will be better guided, and the Basecamp ‘team rooms’ for collaboration will be even more comfortable. We will also provide three levels of support: front line (within each team), 2nd level (UberCloud mentors), 3rd level (software & hardware providers), and finally further grow the interactive UberCloud Exhibit services directory.

And Finally, Why Would You Want to Join the Experiment?

In summary, there are many good reasons for joining this experiment for the next three months. Among them: HPC is complex – it is easier to tackle this complexity within our community; the barriers of entry into HPC as a Service through an experiment are low; learning by doing – experimenting without risk – no failure; becoming an active part of this growing community; exploring the end-to-end process of accessing remote computing resources; and learning how this fits into your research or business direction in the near future.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

NSF Approves Bridges Phase 2 Upgrade for Broader Research Use

January 12, 2017

The recently completed phase 2 upgrade of the Bridges supercomputer at the Pittsburgh Supercomputing Center (PSC) has been approved by the National Science Foundation (NSF) making it now available for research allocations to the national scientific community, according to an announcement posted this week on the XSEDE web site. Read more…

By John Russell

Clemson Software Optimizes Big Data Transfers

January 11, 2017

Data-intensive science is not a new phenomenon as the high-energy physics and astrophysics communities can certainly attest, but today more and more scientists are facing steep data and throughput challenges fueled by soaring data volumes and the demands of global-scale collaboration. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Fast Rewind: 2016 Was a Wild Ride for HPC

December 23, 2016

Some years quietly sneak by – 2016 not so much. It’s safe to say there are always forces reshaping the HPC landscape but this year’s bunch seemed like a noisy lot. Among the noisemakers: TaihuLight, DGX-1/Pascal, Dell EMC & HPE-SGI et al., KNL to market, OPA-IB chest thumping, Fujitsu-ARM, new U.S. President-elect, BREXIT, JR’s Intel Exit, Exascale (whatever that means now), NCSA@30, whither NSCI, Deep Learning mania, HPC identity crisis…You get the picture. Read more…

By John Russell

AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country's premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off. Read more…

By Linda Barney

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This