The Week in HPC Research

By Tiffany Trader

March 7, 2013

The top research stories of the week have been hand-selected from prominent journals and leading conference proceedings. Here’s another diverse set of items, including novel methods of data race detection; a comparison of predictive laws; a review of FPGA’s promise; GPU virtualization using PCI Direct pass-through; and an analysis of the Amazon Web Services High-IO platform.

Scalable Data Race Detection

A team of researchers from Berkeley Lab and the University of California Berkeley are investigating cutting-edge programming languages for HPC. These are languages that promote hybrid parallelism and shared memory abstractions using a global address space. It’s a programming style that is especially prone to data races that are difficult to detect, and prior work in the field has demonstrated 10X-100X slowdowns for non-scientific programs.

In a recent paper, the computer scientists present what they say is “the first complete implementation of data race detection at scale for UPC programs.” UPC stands for Unified Parallel C, an extension of the C programming language developed by the HPC community for large-scale parallel machines. The implementation used by the Berkeley-based team tracks local and global memory references in the program. It employs two methods for reducing overhead 1) hierarchical function and instruction level sampling; and 2) exploiting the runtime persistence of aliasing and locality specific to Partitioned Global Address Space applications.

Experiments show that the best results are attained when both techniques are used in tandem. “When applying the optimizations in conjunction our tool finds all previously known data races in our benchmark programs with at most 50% overhead,” the researchers state. “Furthermore, while previous results illustrate the benefits of function level sampling, our experiences show that this technique does not work for scientific programs: instruction sampling or a hybrid approach is required.”

Their work is published in the Proceedings of the 18th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming.

Next >>

Predicting the Progress of Technology

A fascinating new study applies the scientific method to some of our most popular predictive models. A research team from MIT and the Santa Fe Institute compared several different approaches for predicting technological improvement – including Moore’s Law and Wright’s Law – to known cases of technological progress using past performance data from different industries.

Moore’s Law, theorized by Intel co-founder Gordon Moore in 1965, predicts that a chip’s transistor count will double every 18 months. In more general terms, it suggests that technologies advance exponentially with time. Wright’s Law was first formulated by Theodore Wright in 1936. Also called the Rule of Experience, it holds that progress increases with experience. Other alternative models were proposed by Goddard, Sinclair et al., and Nordhaus.

The study, which employed hindcasting, used a statistical model to rank the performance of the postulated laws. The comparison data came from a database on the cost and production of 62 different technologies. The expansive knowledge-base enabled researchers to test six different prediction principles against real-world data.

The results revealed that the law with the greatest accuracy was Wright’s Law, but Moore’s Law was a very close second. In fact, the laws themselves are more similar than previously realized.

“We discover a previously unobserved regularity that production tends to increase exponentially,” write the authors. “A combination of an exponential decrease in cost and an exponential increase in production would make Moore’s law and Wright’s law indistinguishable…. We show for the first time that these regularities are observed in data to such a degree that the performance of these two laws is nearly the same.”

“Our results show that technological progress is forecastable, with the square root of the logarithmic error growing linearly with the forecasting horizon at a typical rate of 2.5% per year,” they conclude.

The team includes Bela Nagy of the Santa Fe Institute, J. Doyne Farmer of the University of Oxford and the Santa Fe Institute, Quan Bui of St. John’s College in Santa Fe, NM, and Jessika E. Trancik of the Santa Fe Institute and MIT. Their findings are published in the online open-access journal PLOS ONE.

Next >>

FPGA Programming for the Masses

FPGAs (field programmable gate arrays) have been around for many years and show real potential for advancing HPC, but their popularity has been restricted because they are difficult to work with. This is the assertion of a group of researchers from the T.J. Watson Research Center. They argue that FPGAs won’t become mainstream until their various programmability challenges are addressed.

In a paper published last month in ACM Queue, the research team observes that there exists a spectrum of architectures, with general-purpose processors at one end and ASICs (application-specific integrated circuits) on the other. Architectures like PLDs (programmable logic devices), they argue, have that best-of-both-worlds potential in that they are closer to the hardware and can be reprogrammed. The most prominent PLD is in fact an FPGA.

The authors write:

FPGAs were long considered low-volume, low-density ASIC replacements. Following Moore’s law, however, FPGAs are getting denser and faster. Modern-day FPGAs can have up to 2 million logic cells, 68 Mbits of BRAM, more than 3,000 DSP slices, and up to 96 transceivers for implementing multigigabit communication channels. The latest FPGA families from Xilinx and Altera are more like an SoC (system-on-chip), mixing dual-core ARM processors with programmable logic on the same fabric. Coupled with higher device density and performance, FPGAs are quickly replacing ASICs and ASSPs (application-specific standard products) for implementing fixed function logic. Analysts expect the programmable IC (integrated circuit) market to reach the $10 billion mark by 2016.

The researchers note that “despite the advantages offered by FPGAs and their rapid growth, use of FPGA technology is restricted to a narrow segment of hardware programmers. The larger community of software programmers has stayed away from this technology, largely because of the challenges experienced by beginners trying to learn and use FPGAs.”

The rest of this excellent paper addresses the various challenges in detail and brings attention to the lack of support for device drivers, programming languages, and tools. The authors drive home the point that the community will only be able to leverage the benefits of FPGAs if the programming aspects are improved.

Next >>

GPU Virtualization using PCI Direct Pass-Through

The technical computing space has seen several trends develop over the past decade, among them are server virtualization, cloud computing and GPU computing. It’s clear that GPGPU computing has a role to play in HPC systems. Can these trends be combined? A research team from Chonbuk National University in South Korea has written a paper in the periodical Applied Mechanics and Materials, proposing exactly this. The investigate a method of GPU virtualization that exploits the GPU in a virtualized cloud computing environment.

The researchers claim their approach is different from previous work, which mostly reimplemented GPU programming APIs and virtual device drivers. Past research focused on sharing the GPU among virtual machines, which increased virtualization overhead. The paper describes an alternate method: the use of PCI direct pass-through.

“In our approach, bypassing virtual machine monitor layer with negligible overhead, the mechanism can achieve similar computation performance to bare-metal system and is transparent to the GPU programming APIs,” the authors write.

Next >>

Analysis of I/O Performance on AWS High I/O Platform

The HPC community is still exploring the potential of the cloud paradigm to discern the most suitable use cases. The pay-per-use basis of compute and storage resources is an attractive draw for researchers, but so is the illusion of limitless resources to tackle large-scale scientific workloads.

In the most recent edition of the Journal of Grid Computing, computer scientists from the Department of Electronics and Systems at the University of A Coruña in Spain evaluate the I/O storage subsystem on the Amazon EC2 platform, specifically the High I/O instance type, to determine its suitability for I/O-intensive applications. The High I/O instance type, released in July 2012, is backed by SSD and also provides high levels of CPU, memory and network performance.

The study looked at the low-level cloud storage devices available in Amazon EC2, ephemeral disks and Elastic Block Store (EBS) volumes, both on local and distributed file systems. It also assessed several I/O interfaces, notably POSIX, MPI-IO and HDF5, that are commonly employed by scientific workloads. The scalability of a representative parallel I/O code was also analyzed based on performance and cost.

As the results show, cloud storage devices have different performance characteristics and usage constraints. “Our comprehensive evaluation can help scientists to increase significantly (up to several times) the performance of I/O-intensive applications in Amazon EC2 cloud,” the researchers state. “An example of optimal configuration that can maximize I/O performance in this cloud is the use of a RAID 0 of 2 ephemeral disks, TCP with 9,000 bytes MTU, NFS async and MPI-IO on the High I/O instance type, which provides ephemeral disks backed by Solid State Drive (SSD) technology.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Tribute: Dr. Bob Borchers, 1936-2018

June 21, 2018

Dr. Bob Borchers, a leader in the high performance computing community for decades, passed away peacefully in Maui, Hawaii, on June 7th. His memorial service will be held on June 22nd in Reston, Virginia. Dr. Borchers Read more…

By Ann Redelfs

ISC 2018 Preview from @hpcnotes

June 21, 2018

Prepare for your social media feed to be saturated with #HPC, #ISC18, #Top500, etc. Prepare for your mainstream media to talk about supercomputers (in between the hourly commentary on Brexit, the FIFA World Cup, or US pr Read more…

By Andrew Jones

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly but later versions of the Bulldozer line not so much. Fast f Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Preview the World’s Smartest Supercomputer at ISC 2018

Introducing an accelerated IT infrastructure for HPC & AI workloads Read more…

Why Student Cluster Competitions are Better than World Cup

June 21, 2018

My last article about the ISC18 Student Cluster Competition, titled “World Cup is Lame Compared to This Competition”, may have implied that I believe Student Cluster Competitions are better than World Cup soccer in s Read more…

By Dan Olds

ISC 2018 Preview from @hpcnotes

June 21, 2018

Prepare for your social media feed to be saturated with #HPC, #ISC18, #Top500, etc. Prepare for your mainstream media to talk about supercomputers (in between t Read more…

By Andrew Jones

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

European HPC Summit Week and PRACEdays 2018: Slaying Dragons and SHAPEing Futures One SME at a Time

June 20, 2018

The University of Ljubljana in Slovenia hosted the third annual EHPCSW18 and fifth annual PRACEdays18 events which opened May 29, 2018. The conference was chair Read more…

By Elizabeth Leake (STEM-Trek for HPCwire)

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose p Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This