HPC Bolsters Life Sciences

By Tiffany Trader

March 14, 2013

Last month, the Massachusetts Life Sciences Center (MLSC) announced more than $9 million in funding for life science-related projects in Western Massachusetts. Approximately half of that award, or $4.54 million, will allow the Massachusetts Green High Performance Computing Center (MGHPCC) in Holyoke, Mass., to create a cloud-based resource for computational biology. The remaining funds were split between several local community colleges and technical schools.

MLSC President and CEO Susan Windham-Bannister described the impetus and framing for the grants. The MLSC is administering a 10-year, billion-dollar initiative enacted by the Massachusetts legislature in 2008. The investment will go toward strengthening life sciences – a cluster of sectors that includes biotech, pharmaceuticals, medical devices, medical devices and bioinformatics.

As a funding and investment organization, one of MLSC’s main goals is to invest dollars in capital projects that play to the different strengths of the regions within the state. Another goal is to invest in unique resources that support innovation in the life sciences. And the final piece of their mission is to strategically leverage funds to encourage collaboration.

The $4.5 million grant to the MGHPCC meets all of those objectives, according to Windham-Bannister.

The Massachusetts Green High Performance Computing Center

The MGHPCC is a brand-new, state-of-the-art datacenter dedicated to research computing. It was put together by five area universities: Boston University, Harvard University, the Massachusetts Institute of Technology, Northeastern University and the University of Massachusetts.

The Center serves as a nucleus for collaborative work across the partner institutions, says John T. Goodhue, executive director of the Massachusetts Green High Performance Computing Center Inc. “When everyone’s data is in the same place, it’s easier to exchange it, and when they’re all working on and around the same facility, it’s easier to get conversations started,” he adds.

The MLSC award will support the creation of the Commonwealth Computational Cloud for Data Driven Biology. According to Goodhue, it is the first MGHPCC-based system that will be jointly owned by all five universities. The proposal focused on the advantages of creating a resource that was larger than any of the individual schools could feasibly stand up on their own. The project also includes industry partners Astra-Zeneca, Pfizer, Merck, Merrimack Pharmaceuticals, EMC and IBM, among others.

MLSC proposal team leader Chris Hill envisions the facility as a virtual meeting place. He says it’s too soon to commit to hardware and design specifications, but he reports the system will support both genetics sequencing and systems biology work. The hardware decisions will be driven by those areas, says Hill, who is also the principal research engineer at MIT’s Department of Earth, Atmospheric and Planetary Sciences. He adds that his colleagues are “interested in exploring the innovative spaces that will allow researchers to do things that they cannot easily do at the moment.”

Asked whether it will be more of an HPC machine or a big data machine, Hill is quick to respond that they want to bring the compute and the data together, so it will need to satisfy big-compute and big-data demands. “On the genetics side, there’s a lot of data processing that goes on, but on the systems biology side, there’s a lot of modeling work. These two models can drive architectures in somewhat different directions,” says Hill, “So it may be we end up with a hybrid or it may be that there’s a nice solution out there that addresses both under one umbrella.”

Next >>

As the architectural details have yet to be worked out, the cloudiness of the system is still unclear. Hill sees the virtue in “giving the machine a personality that meets researchers’ needs” and says virtualization may be a part of making this happen. He describes a resource that is more on-demand, more directly tied-in to lab analysis, experiments, measurements in hospitals and so on. “Rather than the traditional HPC batch environment, there will be a more responsive and interactive way of operating with this system,” he says.

Hill adds that the design team is keeping a close eye on advancements in server architectures, especially in the microserver space. “It’s too early to do anything with them this year,” he says, “but they are on an interesting trajectory in terms of performance per joule of energy.”

The partners are rolling out the new system in three stages, which will allow them to evolve the technology both in response to user needs and in regards to the latest technology developments. They are aiming to have an initial system up by the end of the year.

Once online, the Commonwealth Computational Cloud will be part of a high-speed academic network. The MGHPCC partners have been investing time and money toward creating a network infrastructure that enables fast remote access. End-to-end fiber supports 10 Gigabit speeds between the partner institutions and the datacenter, which is also hooked into high-speed research networks like Northern Crossroads and Internet2.

Changing Lives

The MGHPCC is located in Holyoke, Mass., a successful paper mill town in its heyday. The site is not far from some of the best colleges in the country, but it has suffered from high rates of unemployment in recent decades. Winning the bid for this state-of-the-art computing center is a real boon for the community.

Awarding the funds for a life science-based computational project was a strategic move by the MLSC.

“Some of the biggest breakthroughs in life science are being enabled by breakthroughs in computing. Personalized medicine, for example, is enabled by genomics. Genomics and genome-mapping has been enabled by high-performance computing,” remarks MLSC CEO Windham-Bannister.

“It’s important for us to make investments that impact the pace and success of innovation in the life sciences and we believe that high-performance computing is crucial,” she adds.

Investment in life sciences has not only enabled significant quality-of-life benefits, but it has been a proven model for driving economic development – a point that Windham-Bannister emphasizes:

“There are so many strong life sciences communities around the US – Massachusetts, California, Ohio, North Carolina, New York, Texas, and others – all of us are in search of ways to continue to make innovation in the life sciences the hallmark of the US, the hallmark of our state, and a way in which we can reinvent the economy here in the US. I think all of our states have seen the erosion of economic sectors that were historically very strong, and we need to find a way to replace those, and the 21st century economy appears to be the innovation economy.”

The MLSC CEO expects that the way we identify new drugs and new biologics is going to be fundamentally altered by high-performance, high-throughput computing. She suggests that in addition to supporting the research of hospitals and academic institutions, the new cloud-based system will attract the interest of life sciences outfits, companies like Pfizer, Novartis, Biogen, Amgen, Synovis, all of which have grown their presence in Massachusetts. “Our hope,” says Windham-Bannister, “is they will take advantage of this resource to support their drug discovery and drug development activities.”

Asked what she is most excited about in the field of life sciences, Windham-Bannister points to the important advances coming from the fields of personalized medicine and precision medicine, especially as it relates to treating pediatric cancer. “More and more, we’re seeing this notion of exactly the right drug and a companion diagnostic that goes with it so that we understand the genetic makeup of the individual and the molecular makeup of the tumor, and the very best way to treat that,” she says.

This new era brings the intelligence of a supercomputer and the ability to run massive amounts of data together, obviating the need to search one by one – which is the way diagnostics and treatments were done in the past. The ability to start with a more precise treatment to begin with is game-changing, says Windham-Bannister: “It’s computing changing our lives.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National L Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blue Ribbon and Harley Davidson motorcycles the agenda addresse Read more…

By Merle Giles

NSF Awards $10M to Extend Chameleon Cloud Testbed Project

September 19, 2017

The National Science Foundation has awarded a second phase, $10 million grant to the Chameleon cloud computing testbed project led by University of Chicago with partners at the Texas Advanced Computing Center (TACC), Ren Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is s Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

  • arrow
  • Click Here for More Headlines
  • arrow
Share This