The Week in HPC Research

By Tiffany Trader

March 14, 2013

The top research stories of the week have been hand-selected from leading scientific centers, prominent journals and relevant conference proceedings. Here’s another diverse set of items, including the just-announced 2012 Turing Prize winners; an examination of MIC acceleration in short-range molecular dynamics simulations; a new computer model to help predict the best HIV treatment; the role of atmospheric clouds in climate change models; and more reliable cloud computing.

Security Researchers Win Turing Prize

The Association for Computing Machinery (ACM) has named the 2012 Turning Prize winners. The esteemed award goes to Shafi Goldwasser of the Massachusetts Institute of Technology (MIT) and the Weizmann Institute of Science and Silvio Micali of MIT for their ground-breaking work in cryptography and complexity theory.

Goldwasser and Micali carried out pioneering research in field of provable security. Their work laid the mathematical foundations that made modern cryptography possible. The ACM observes that “by formalizing the concept that cryptographic security had to be computational rather than absolute, they created mathematical structures that turned cryptography from an art into a science.”

ACM President Vint Cerf provided additional details in a prepared statement. “The encryption schemes running in today’s browsers meet their notions of security,” he said of the duo. “The method of encrypting credit card numbers when shopping on the Internet also meets their test. We are indebted to these recipients for their innovative approaches to ensuring security in the digital age.”

So many of our daily activities are possible because of their research. According to Alfred Spector, vice president of Research and Special Initiatives at Google Inc., these achievements have changed how we work and live. Applications extend to ATM cards, computer passwords, electronic commerce and even electronic voting.

The Turing Prize has been called the “Nobel Prize in Computing.” It carries a $250,000 prize, funded by Intel Corporation and Google Inc.

Next >> MIC Acceleration

MIC Acceleration for Molecular Dynamics

A team of researchers from the National University of Defense Technology in Changsha, China, is investigating the use of MIC acceleration in short-range molecular dynamics simulations.

Their paper in the Proceedings of the First International Workshop on Code OptimiSation for MultI and many Cores (COSMIC’13) begins with the observation that heterogeneous systems built with accelerators (like GPUs) or coprocessors (like Intel MIC) are increasing in popularity. Such architectures are used for their ability to exploit large-scale parallelism.

In response to this evolving paradigm, the authors present a hierarchical parallelization scheme for molecular dynamics simulations on heterogeneous systems that combine CPU and MIC acceleration, specifically one 2.60GHZ eight-core Intel Xeon E5-2670 CPU and one 57-core Intel Knight Corner co-processor.

They propose to exploit multi-level parallelism by combining

(1) Task-level parallelism using a tightly-coupled division method

(2) Thread-level parallelism employing spatial-decomposition through dynamically scheduled multi-threading, and

(3) Data-level parallelism via SIMD technology.

The team reports optimum performance on the hybrid CPU-MIC system. They write: “by employing a hierarchy of parallelism with several optimization methods such as memory latency hiding and data pre-fetching, our MD code running on a CPU-MIC heterogeneous system…achieves (1) multi-thread parallel efficiency of 72.4% for 57 threads on the co-processor with up to 7.62 times SIMD speedup on each core for the force computation task, and (2) up to 2.25 times speedup on the CPU-MIC system over the pure CPU system, which outperforms our previous work on a CPU-GPU (one NVIDIA Tesla M2050) platform.”

Next >> Computer Modeling Benefits HIV Treatment

Computer Models Help Predict Response to HIV Drugs

New research published in the latest issue of Journal of Antimicrobial Chemotherapy could improve the treatment of HIV patients in resource-limited settings.

According to the study, the models can predict how HIV patients whose drug therapy is failing will respond to combination antiretroviral therapy (ART). Most notably for resource-constrained regions, the models do not require the expensive genotyping tests that are normally used to predict drug resistance. In effect, the researchers were able to create a model that predicted response to ART without a genotype with comparable accuracy to a genotyping-based assessment.

Julio Montaner, former President of the International AIDS Society, commented: “This is the first time this approach has been tried with real cases of treatment failure from resource-limited settings.”

Director of the BC Centre for Excellence in HIV & AIDS, based in Vancouver, Canada, and an author on the paper, said, “the results show that using sophisticated computer based algorithms we can effectively put the experience of treating thousands of patients into the hands of the under-resourced physician with potentially huge benefits.”

The models are available for free on the RDI website at http://www.hivrdi.org.

Next >> The Science of Clouds

The Science of Clouds – Real Clouds

Climate models continue to improve, and scientist are producing realistic representations of the oceans, ice, land surfaces and atmospheric conditions. However, a model will always have some degree of uncertainty, and when it comes to climate models, clouds pose the greatest challenge to accuracy.

As an article at Berkeley Lab News Center explains, “clouds can both cool the planet, by acting as a shield against the sun, and warm the planet, by trapping heat.”

Lawrence Berkeley National Laboratory scientist David Romps is investigating the behavior of clouds. He hopes to address why they act like they do and how their cover affects the temperatures of a planet.

“We don’t understand many basic things about clouds,” he says. “We don’t know why clouds rise at the speeds they do. We don’t know why they are the sizes they are. We lack a fundamental theory for what is a very peculiar case of fluid flow. There’s a lot of theory that remains to be done.”

The earth’s response to atmospheric levels of CO2 is studied using global climate models (GCMs) on lab supercomputers. At current computational limits, GCMs are restricted to modeling atmospheric samples less than 100 kilometers in size. However, convective clouds have sizes closer to 1 km, placing them outside the boundaries of GCMs. In response to this dilemma, climate scientists use submodels to resolve cloud behavior. It gets the job done, but comes with its own set of limitations, which Romp is chipping away at.

He’s already had some early successes. His theory that climate change, or rising temperatures, will result in fewer clouds was confirmed with a high-resolution model.

Next >> Reliable Cloud Computing

Making HPC Cloud Computing More Reliable

A team of computer scientists from Louisiana Tech University has contributed to the growing body of HPC cloud research, specifically as it relates to the reliability of cloud computing resources. Their paper, A Reliability Model for Cloud Computing for High Performance Computing Applications, was published in the book, Euro-Par 2012: Parallel Processing Workshops.

Cloud computing and virtualization allow resources to be used more efficiently. Public cloud resources are available on-demand and don’t require an expensive capital expenditure. But with an increase in both software and hardware components, comes a corresponding rise in server failure. The researchers assert that it’s important for service providers to understand the failure behavior of a cloud system, so they can better manage the resources. Much of their research applies specifically to the running of HPC applications on the cloud.

In the paper, the researchers “propose a reliability model for a cloud computing system that considers software, application, virtual machine, hypervisor, and hardware failures as well as correlation of failures within the software and hardware.”

They conclude failures caused by dependencies create a less reliable system, and as the failure rate of the system increases, the mean time to failure decreases. Not surprisingly, they also find that an increase in the number of nodes decreases the reliability of the system.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This