What Will the Sequester Mean to HPC (and Federal) Research?

By Richard L. Brandt

March 20, 2013

On Friday, March 15, President Obama gave a speech at DOE’s Argonne National Laboratory, and light-heartedly expressed his concerns about the effects of sequestration on budgets at the country’s national laboratories.

Noting that some of the employees were standing in the crowded auditorium, he quipped, “I thought [that at] Argonne, one of the effects of the sequester [was that] you had to get rid of chairs!”

People laughed. Outside of that speech, however, nobody in a federal lab is chuckling over the possible impact of sequestration. Prominent heads of national labs, university researchers and technology executives are very concerned about how budget stalemates between the White House and Congress will affect government-funded research across the country.

Sequestration, because it demands cuts in government spending almost across the board, has brought the issue directly to the datacenter. If left in place, it will put federally funded R&D this year at a level $12.5 billion less than the amount spent in 2011 – an 8.7% decrease. Several organizations have already instituted budget cuts to prepare for the decrease in funding. The National Institutes of Health has said it is cutting grant levels by 10 percent and will offer fewer grants. The National Science Foundation says it will eliminate 1,000 grants this year.

Moreover, sequestration has sparked an op-ed debate over the value of government-funded research itself. It’s a debate that could extend well beyond the current stalemate.

Locating the speech at Argonne and putting energy research on the table was itself a strategic move to highlight the importance of funding national labs. President Obama also tried to offer new funding in a palatable way. He did not call for additional taxes or even preventing future cuts, but suggested using a non-tax form of revenue to fund energy research. The approach would take $2 billion over the next 10 years from leases paid by energy companies that develop fossil fuel resources on federal land. That money would fund a very specific type of research: developing electric vehicles, homegrown biofuels, and domestically produced natural gas.

But that still leaves the longer-term question open. Is it a good idea to use tax revenue to fund research that may or may not have future benefits to the country? The heads of government organizations, national labs, universities and other supporters of technology are now defending the concept in hearings and in editorial pages across the country.

William Brinkman, director of the Office of Science at DOE, testified before a House Appropriations Subcommittee on Energy and Water Development on March 5. He said that sequestration would cut this year’s budget for the Office of Science by $215 million from 2012, something the country cannot afford at a time when “other countries around the world are challenging our scientific leadership in essentially all the scientific disciplines that we steward.” HPC research is a big part of that. “Since the inception of high-performance computing, the United States has been a world leader in this field,” Brinkman continued.

But that may no longer be the case. Budget cuts will affect research intended to “accelerate the next generation of supercomputers at a time when international competition in this domain is growing,” he said.

In fact, the US is not the clear leader it once was. In 2011, a 700,000-core Fujitsu K computer installed at the RIKEN Advanced Institute for Computational Science (AISC) hit the summit of the TOP500 list. It dropped to third position on the November 2012 list because of competition from newer machines, but 31 of the 50 most powerful computers on that list are based outside the US. Throughout the world, countries such as China, Japan, the UK, Germany, India and most recently Switzerland are touting the competitive benefits of new supercomputers.

China has joined the competition to become the first country with an exascale computer, as has a European consortium, the Partnership for Advanced Computing in Europe (PRACE). The Indian Institute of Technology Delhi (IIT Delhi) is partnering with NVIDIA to create a research lab to try to reach exascale computing in India by 2017.

Next >>

Brinkman also argues that federally-funded HPC research is an enormous boon to industry at home. “Growth in computing performance has the potential to advance multiple sectors of our economy, including science, manufacturing, and national defense,” he testified before Congress. As one example, he pointed out that corporations are conducting 15 projects in the Industrial High Performance Computing Partnerships Program at Oak Ridge National Laboratory (ORNL).

Others have also become very vocal in defending federal R&D in general as a boon to the economy. The Washington think tank ITIF estimates that projected cuts in R&D will reduce the GDP by between $203 billion and $860 billion over the next nine years. It also says that sequestration will put the US “$511 billion behind in R&D investment when compared to expected Chinese R&D expenditure growth rates.”

In an editorial in The Atlantic, National Lab Directors Paul Alivisatos (Lawrence Berkeley National Laboratory), Eric D. Isaacs (Argonne) and Thom Mason (ORNL) write that the impact of sequestration “will be felt years – or even decades – in the future, when the nation begins to feel the loss of important new scientific ideas that now will not be explored, and of brilliant young scientists who now will take their talents overseas or perhaps even abandon research entirely.” Federal R&D spending amounts to less than one percent of the federal budget, they argue, and cuts will result in “gaps in the innovation pipeline [that] could cost billions of dollars and hurt the national economy for decades to come.”

In an editorial in The Financial Times, MIT president Rafael Reif and former Intel CEO Craig Barrett argue that “scientific discovery improves life and creates wealth like nothing else. But that notion has essentially been on trial in the US for decades.” They point out that the commerce department has estimated that since WWII, 75 percent of postwar growth came from technological innovation.

Some people, however, dispute those numbers. Roger Pielke a professor of environmental studies at the Center for Science and Technology Policy Research at the University of Colorado at Boulder, has become something of a de-facto spokesman to counter the economic arguments. He is also a Senior Fellow at The Breakthrough Institute, which he describes as a “progressive think tank.” He argues that the numbers claiming economic growth from R&D are bogus. “It would be remarkable if true,” he writes at the organization’s website. “Unfortunately, it is not.” He says that there is no statistical basis for the claims. He also says that early proponents of the theories that economic growth is sparked by “creative destruction” in the economy (Joseph Schumpeter) or “technical change” (Robert Solow), which led to the arguments of the economic impact of R&D, have been misunderstood.

Many fiscal conservatives in Congress are likely to agree. The result so far is that the debate continues and budget cuts may still slice into funding of HPC centers, federal labs, and federal R&D in general. It’s an impact that may be felt for years to come.

Related Articles:

Supercomputing Challenges and Predictions

Presidential Supercomputing

Debt Deal Casts Shadow on US Research Funding

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This