The Week in HPC Research

By Tiffany Trader

March 21, 2013

The top research stories of the week have been hand-selected from leading scientific centers, prominent journals and relevant conference proceedings. Here’s another diverse set of items, including an evaluation of sparse matrix multiplication performance on Xeon Phi versus four other architectures; a survey of HPC energy efficiency; performance modeling of OpenMP, MPI and hybrid scientific applications using weak scaling; an exploration of anywhere, anytime cluster monitoring; and a framework for data-intensive cloud storage.

Evaluating Sparse Matrix Multiplication Kernels on Intel Xeon Phi

The Intel Xeon Phi made a big splash at SC12, and computer scientists are eager to put the coprocessor through its paces. Such is the case with a team of researchers from the Ohio State University, who authored a recent paper, describing their work evaluating sparse matrix multiplication kernels on the Intel Xeon Phi.

As the team notes, the Phi sports 61 cores, each supporting 4 hardware threads with 512-bit wide SIMD registers for a theoretical peak performance of 1 teraflops double precision.

Their paper is meant to serve as an introduction to the Phi architecture and to analyze its peak performance using the sparse matrix as a test application. It’s a good choice to test the Phi’s capabilities because it is representative of many large-scale applications and because it is a difficult problem for coprocessor architectures.

As the team writes: “Many scientific applications involve operations on large sparse matrices such as linear solvers, eigensolver, and graph mining algorithms. The core of most of these applications involves the multiplication of a large, sparse matrix with a dense vector (SpMV).”

They also note that “the irregularity and sparsity of SpMV-like kernels create several problems for these architectures [i.e. accelerators/coprocessors].”

The researchers compared the sparse matrix multiplication performance of Xeon Phi with four other architectures: two dual Intel Xeon processors, X5680 (Westmere) and E5-2670 (Sandy Bridge), as well as two NVIDIA Tesla GPUs C2050 and K20. They results of their experiment show that the Phi offered superior performance.

They write that “although the design of a Xeon Phi core is not much different than those of the cores in modern processors, its large number of cores and hyperthreading capability allow many application to saturate the available memory bandwidth, which is not the case for many cutting-edge processors. Yet, our performance studies show that it is the memory latency not the bandwidth which creates a bottleneck for SpMV on this architecture. Finally, our experiments show that Xeon Phi’s sparse kernel performance is very promising and even better than that of cutting-edge general purpose processors and GPUs.”

Next >>

Energy Awareness in HPC: A Survey

A group of researchers from the Walchand College of Engineering, in the city of Sangli, Maharashtra, India, have published a paper addressing one of the most pressing problems in high-performance computing: energy-efficiency.

The team sets out by acknowledging the increased awareness of energy and costs associated with power management for high performance computing. They write that “power control is becoming a key challenge for effectively operating a modern high end computing infrastructures such as server, clusters, data centers and grids,” although the scope of the paper is primarily concerned with cluster systems.

The researchers argue that developing energy efficient computer designs is the next major goal of the high performance computing. The paper presents a survey and classification of energy efficient techniques for cluster computing. The research outlines both hardware and software related variables and sub-classes thereof. An important point made in the paper is that performance itself does not become a secondary objective but it is understood that power is a constraint to increasing performance.

Next >>

Performance Modeling of Hybrid MPI/OpenMP Applications at Scale

Texas A&M University computer scientists Xingfu Wu and Valerie Taylor are exploring a performance modeling framework based on memory bandwidth contention time and a parameterized communication model. They have co-authored a paper describing their work with modeling and predicting the performance of OpenMP, MPI and hybrid scientific applications using weak scaling on large-scale multicore supercomputers.


The research team employed STREAM memory benchmarks to identify initial performance and model validation of MPI and OpenMP applications. They also used the hybrid large-scale scientific application Gyrokinetic Toroidal Code in magnetic fusion to validate the performance model.

The experiment used three different supercomputers: an IBM POWER4, POWER5+ and BlueGene/P. Study results showed an error rate of less than 7.77% for predicting the performance of hybrid MPI/OpenMP GTC on up to 512 cores on these multicore systems.

Next >>

Anywhere Anytime Cluster Monitoring

A trio of computer scientists from Shandong University in Jinan, China, are exploring the feasibility of anywhere, anytime cluster monitoring. More specifically, they are working to design and implement a cluster monitoring system based on Android.

The team starts with the view that high performance computing (HPC) has been democratized to the point that HPC clusters have become an important resource for many scientific fields, including graphics, biology, physics, climate research, and many others. Still, depending on local funding realities, the availability of such machines is almost universally constrained. In light of this, monitoring becomes an essential task necessary for the efficient utilization and management of limited resources. However, as the researchers observe, traditional cluster monitoring systems demonstrate poor mobility, which stymies proper management.

The authors are seeking to improve the flexibility of monitoring systems and improve the communication between administrators. They assert that the mobile cluster monitoring system outlined in their paper “will make it possible to monitor the whole cluster anywhere and anytime to allow administrators to manage, diagnose, and troubleshoot cluster issues more accurately and promptly.”

The system they developed is based on the Android platform, the brainchild of Google, and built on open source monitoring tools, Gaglia and Nagios. The design uses a client-server model, where the server probes the data via monitoring tools and produces a global view of the data. The mobile client gets the monitoring packages by Socket. Then, the cluster’s status is displayed on the Android application.

Their work was published as a chapter in the book, Pervasive Computing and the Networked World.

Next >>

A Framework for Cloud Storage

UK computer scientists Victor Chang, Robert John Walters and Gary Wills set out to explore the topic of cloud storage and bioinformatics in a private cloud deployment. They’ve written a paper about their experience to serve as a resource for other researchers with data-intensive compute needs who are interested in analyzing the benefits of a cloud model.

Among the many benefits of the cloud model are its cost-savings potential, agility, efficiency, resource consolidation, business opportunities and possible energy savings. Despite the inherent attractiveness, there are still barriers to overcome, and one of these, according to the authors is the need for a standard or framework to manage both operations and IT services.

They write that “this framework needs to provide the structure necessary to ensure any cloud implementation meets the business needs of industry and academia and include recommendations of best practices which can be adapted for different domains and platforms.”

Their work examines service portability for a private cloud deployment. Storage, backup and data migration and data recovery are all addressed. The paper presents a detailed case study about cloud storage and bioinformatics services developed as part of the Cloud Computing Adoption Framework (CCAF). In order to illustrate the benefits of CCAF the authors provide several bioinformatics examples, including tumor modeling, brain imaging, insulin molecules and simulations for medical training. They believe that their proposed solution offers cost reduction, time-savings and user friendliness.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This