FLOPS Fall Flat for Intelligence Agency

By Nicole Hemsoth

March 27, 2013

The Intelligence Advanced Research Projects Activity (IARPA) is putting out some RFI feelers in hopes of pushing new boundaries with an HPC program. However, at the core of their evaluation process is an overt dismissal of current popular benchmarks, including floating operations per second (FLOPS).

To uncover some missing pieces for their growing computational needs, IARPA is soliciting for “responses that illuminate the breadth of technologies” under the HPC umbrella, particularly the tech that “isn’t already well-represented in today’s HPC benchmarks.”

The RFI points to the general value of benchmarks (Linpack, for instance) as necessary metrics to push research and development, but argues that HPC benchmarks have “constrained the technology and architecture options for HPC system designers.” More specifically, in this case, floating point benchmarks are not quite as valuable to the agency as data-intensive system measurements, particularly as they relate to some of the graph and other so-called big data problems the agency is hoping to tackle using HPC systems.

From the document:

In this RFI we seek information about novel technologies that have the potential to enable new levels of computational performance with dramatically lower power, space and cooling requirements than the HPC systems of today. Importantly, we also seek to broaden the definition of high performance computing beyond today’s commonplace floating point benchmarks, which reflect HPC’s origins in the modeling and analysis of physical systems. While these benchmarks have been invaluable in providing the metrics that have driven HPC research and development, they have also constrained the technology and architecture options for HPC system designers. The HPC benchmarking community has already started to move beyond the traditional floating point benchmarks with new benchmarks focused on data intensive analysis of large graphs and on power efficiency.

The grumblings about whether or not FLOPS represent a valid measure of real application performance for large-scale users is nothing new, but it seems the questions about this are creeping up with more frequency on the end user side, at least for those whose problems tend to revolve around so-called big data problems—in other words, those with complex, large datasets that create unique programming, memory and other conditions.

As IARPA echoes, there are many technologies that are still maturing that “have the potential to achieve high performance on important computational challenges but are highly unlikely to do well on today’s benchmarks (e.g., quantum computation, molecular/DNA computation, neural computation, optical computation).”

One could go out on a limb and point to the continued development of high performance systems to tackle data-intensive problems. John Johnson from Pacific Northwest National Laboratory has described this in a number of presentations. One of the pieces from his talk serves this point rather well.

From: http://www.digitalpreservation.gov/meetings/documents/othermeetings/Johnson.pdf

On that note, Addison Snell of Intersect360 Research points to the diversity of applications, noting that some  “are sensitive to flops, but there are others that require different types of performance. FFTs and sparse linear algebra are examples of applications that are not flop-centric, but rather are much more reliant on the interconnect and system topology.” He added that as in this case, “Certain sectors of the government are very interested in finding systems that will deliver on these other dimensions of scalability.”

This is certainly not to say that the FLOPS designation is becoming irrelevant—it is critical to have performance benchmarks for top systems. But for users who have budgetary constraints on power and cooling (and this is a big part of this RFI), want to use big iron efficiently, and plow through their massive, complex data wells quickly, it’s not difficult to see how FLOPS could be a more abstract representation of actual use, especially when using theoretical peak benchmarks to evaluate potential real-world application performance.

AMD research Josh Mora has performed a fair bit of research into the value of FLOPS for real-world applications, including CFD and others. He asserts that FLOPS, at least theoretical FLOPS, are not “a good indicator of how applications such as CFD and many others will perform.”

As CSS Founder (and HPCwire contributor) Gary Johnson argued, publicly funded high-end computers – including the top machines – are generally placed in environments where they are shared by a number of users. “Depending on site policies, there may be anywhere from a few hundred to several thousand users on these machines. Furthermore, these computers are seldom devoted in their entirety to a single application run. When they are, that run is likely to be Linpack benchmark to qualify for the next edition of the TOP500 list.”

Johnson says that when you do the math, no one really sees the full strength of the top computer. “Users just get a slice of the machine, one that is probably equivalent to full use of some computer much lower on the TOP500 list (and much cheaper).”

Although IARPA doesn’t want to get mixed into the benchmark brew with this request, some of the data-intensive system technologies that back some of the graph analytics needs they hint at are firming up some of their own benchmarks. The most obvious example here would be the Graph 500 list, which measures edges-traversed performance—a prime benchmark for an agency that likely is creating massive social graphs to discover previously unseen connections.

Related Articles

Number Crunching, Data Crunching and Energy Efficiency: the HPC Hat Trick

HPC Lists We’d Like to See

Jailbreaking HPC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Turing Architecture, Focusing on Real-Time Ray Tracing

August 16, 2018

From the SIGGRAPH professional graphics conference in Vancouver this week, Nvidia CEO Jensen Huang unveiled Turing, the company's next-gen GPU platform that introduces new RT Cores to accelerate ray tracing and new Tenso Read more…

By Tiffany Trader

HPC Coding: The Power of L(o)osing Control

August 16, 2018

Exascale roadmaps, exascale projects and exascale lobbyists ask, on-again-off-again, for a fundamental rewrite of major code building blocks. Otherwise, so they claim, codes will not scale up. Naturally, some exascale pr Read more…

By Tobias Weinzierl

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum technology used. One idea is to mitigate noisiness and perh Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum Read more…

By John Russell

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This