FLOPS Fall Flat for Intelligence Agency

By Nicole Hemsoth

March 27, 2013

The Intelligence Advanced Research Projects Activity (IARPA) is putting out some RFI feelers in hopes of pushing new boundaries with an HPC program. However, at the core of their evaluation process is an overt dismissal of current popular benchmarks, including floating operations per second (FLOPS).

To uncover some missing pieces for their growing computational needs, IARPA is soliciting for “responses that illuminate the breadth of technologies” under the HPC umbrella, particularly the tech that “isn’t already well-represented in today’s HPC benchmarks.”

The RFI points to the general value of benchmarks (Linpack, for instance) as necessary metrics to push research and development, but argues that HPC benchmarks have “constrained the technology and architecture options for HPC system designers.” More specifically, in this case, floating point benchmarks are not quite as valuable to the agency as data-intensive system measurements, particularly as they relate to some of the graph and other so-called big data problems the agency is hoping to tackle using HPC systems.

From the document:

In this RFI we seek information about novel technologies that have the potential to enable new levels of computational performance with dramatically lower power, space and cooling requirements than the HPC systems of today. Importantly, we also seek to broaden the definition of high performance computing beyond today’s commonplace floating point benchmarks, which reflect HPC’s origins in the modeling and analysis of physical systems. While these benchmarks have been invaluable in providing the metrics that have driven HPC research and development, they have also constrained the technology and architecture options for HPC system designers. The HPC benchmarking community has already started to move beyond the traditional floating point benchmarks with new benchmarks focused on data intensive analysis of large graphs and on power efficiency.

The grumblings about whether or not FLOPS represent a valid measure of real application performance for large-scale users is nothing new, but it seems the questions about this are creeping up with more frequency on the end user side, at least for those whose problems tend to revolve around so-called big data problems—in other words, those with complex, large datasets that create unique programming, memory and other conditions.

As IARPA echoes, there are many technologies that are still maturing that “have the potential to achieve high performance on important computational challenges but are highly unlikely to do well on today’s benchmarks (e.g., quantum computation, molecular/DNA computation, neural computation, optical computation).”

One could go out on a limb and point to the continued development of high performance systems to tackle data-intensive problems. John Johnson from Pacific Northwest National Laboratory has described this in a number of presentations. One of the pieces from his talk serves this point rather well.

From: http://www.digitalpreservation.gov/meetings/documents/othermeetings/Johnson.pdf

On that note, Addison Snell of Intersect360 Research points to the diversity of applications, noting that some  “are sensitive to flops, but there are others that require different types of performance. FFTs and sparse linear algebra are examples of applications that are not flop-centric, but rather are much more reliant on the interconnect and system topology.” He added that as in this case, “Certain sectors of the government are very interested in finding systems that will deliver on these other dimensions of scalability.”

This is certainly not to say that the FLOPS designation is becoming irrelevant—it is critical to have performance benchmarks for top systems. But for users who have budgetary constraints on power and cooling (and this is a big part of this RFI), want to use big iron efficiently, and plow through their massive, complex data wells quickly, it’s not difficult to see how FLOPS could be a more abstract representation of actual use, especially when using theoretical peak benchmarks to evaluate potential real-world application performance.

AMD research Josh Mora has performed a fair bit of research into the value of FLOPS for real-world applications, including CFD and others. He asserts that FLOPS, at least theoretical FLOPS, are not “a good indicator of how applications such as CFD and many others will perform.”

As CSS Founder (and HPCwire contributor) Gary Johnson argued, publicly funded high-end computers – including the top machines – are generally placed in environments where they are shared by a number of users. “Depending on site policies, there may be anywhere from a few hundred to several thousand users on these machines. Furthermore, these computers are seldom devoted in their entirety to a single application run. When they are, that run is likely to be Linpack benchmark to qualify for the next edition of the TOP500 list.”

Johnson says that when you do the math, no one really sees the full strength of the top computer. “Users just get a slice of the machine, one that is probably equivalent to full use of some computer much lower on the TOP500 list (and much cheaper).”

Although IARPA doesn’t want to get mixed into the benchmark brew with this request, some of the data-intensive system technologies that back some of the graph analytics needs they hint at are firming up some of their own benchmarks. The most obvious example here would be the Graph 500 list, which measures edges-traversed performance—a prime benchmark for an agency that likely is creating massive social graphs to discover previously unseen connections.

Related Articles

Number Crunching, Data Crunching and Energy Efficiency: the HPC Hat Trick

HPC Lists We’d Like to See

Jailbreaking HPC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This