NSF Official On New Supers, Data-Intensive Future

By Nicole Hemsoth

March 28, 2013

It has been a noteworthy week in the world of scientific and technical computing as two long-awaited supercomputers have been formally revved up for big research action.

The Dell-Intel scientific workhorse, Stampede, at TACC was ushered into the large-scale distributed research fold yesterday. And at the moment of this writing, the rather storied IBM and then Cray-backed Blue Waters system at NCSA is gearing up for its formal intro.

At the heart of both of these systems is some serious monetary backing from the National Science Foundation (NSF), which has committed several million to seeing both supers into the world—no matter how entangled the path. The organization funded the large majority of both projects in the name of furthering some critical human-centered scientific projects related to the environment, gemonics, disaster preparedness and epidemiology.

We chatted earlier this week with Alan Blatecky who directs the NSF’s Division of Advanced Cyberinfrastrcture about where these supers fit into the overarching mission of the NSF–and what the future looks like as applications require systems that are as “big data” ready as they are computationally robust.

Blatecky reiterated that from an NSF standpoint, these are two major investments in HPC, but they aren’t necessarily related in terms of anticipated use or application types. As he told us, the two systems are designed for quite different purposes.

One the one hand, the massive Stampede will cater to a large number of users with an emphasis on boosting the breadth of applications—not to mention extending what those extended apps are able to crunch. Blue Waters, on the other hand, will focus on a much smaller number of users, perhaps as many as a dozen, who have very deep, specific research applications.

While grappling with multiple users across a distributed system like Stampede and its XSEDE base is never simple, there are far more pressing challenges. In addition to pointing to extensive application retooling that needs to happen, especially on Blue Waters, there was one phrase we heard several times–“big data”.

The ability to take advantage of the large number of cores on a machine like Blue Waters is one of the biggest challenges user will face, says Blatecky, who points to how his organization is providing support on the programming and computer science front to aid domain specialist scientists. He said that going forward, the systems that will shine for the “big science” endeavors of the NSF will be those that can strike a balance between being data-intensive systems while retaining the computational power of massive numbers of cores, some of which are being pushed by accelerators and co-processors.

As Blatecky detailed, “Our point of view at the NSF is focused on the broader base of scientific users. We’re interested in the data-intensive computational requirements, which is part of what’s unique about Blue Waters. It has that needed balance between power, memory and storage to address both the data-intensive and computationally-intensive applications.”

When asked about the supercomputing goals the NSF wants to support over the next five years, Blatecky said that the real mission is to support a broader group of scientific users, especially those working in hot applications like genomics, materials science and environmental research areas. Most of their plans revolve around socially-oriented missions, including studies to predict earthquakes, flood outcomes, disaster response situations, and medically-driven research on the HIV and epidemic modeling fronts.

We also talked briefly about how HPC as we know it–and the NSF funds it–could change over the next five years. “I don’t know what it will be,” he noted, but he has no doubt that the performance-driven architectures might not be enough to keep up with the very real data explosion across real science applications unless they strike that memory/storage/power balance that Blue Waters has.

While not all HPC application are necessarily hugely data-intensive, a look down the list of applications reveals some of the highest data volume-driven research areas in science, particularly around medical and earth sciences projects. TACC, for instance, will now be the center of some cutting-edge earthquake, environmental and ecological research as scientists from around the world bring their best and brightest ideas –not to mention an unprecedented level of data–to the common table of the shared resource.

As TACC Director Jay Boisseau stated upon the formal announcement of Stampede yesterday, the system has been “designed to support a large, diverse research community. We are as excited about Stampede’s comprehensive capabilities and its high usability as we are of its tremendous performance.” On that note, 90% of TACC’s new powerhouse will be dedicated to the XSEDE program, which is a unified virtualized system that lets global scientists tap into powerful systems, new data wells and computational tools through one hub.

TACC will tap into the remaining horsepower for larger goals within its own center and in the University of Texas research community. And there is certainly some power to the system. As TACC described cleanly in their own statement on the specs, the Dell and Intel system boasts the following points of pride:

Stampede system components are connected via a fat-tree, FDR InfiniBand interconnect. One hundred and sixty compute racks house compute nodes with dual, eight-core sockets, and feature the new Intel Xeon Phi coprocessors. Additional racks house login, I/O, big-memory, and general hardware management nodes. Each compute node is provisioned with local storage. A high-speed Lustre file system is backed by 76 I/O servers. Stampede also contains 16 large memory nodes, each with 1 TB of RAM and 32 cores, and 128 standard compute nodes, each with an NVIDIA Kepler K20 GPU, giving users access to large shared-memory computing and remote visualization capabilities, respectively. Users will interact with the system via multiple dedicated login servers, and a suite of high-speed data servers. The cluster resource manager for job submission and scheduling will be SLURM (Simple Linux Utility for Resource Management).

Unlike Stampede, which is expected to make a top 5 showing on the Top 500m Blue Waters will not be benchmarking for reasons NCSA’s Bill Kramer explained to us in detail right around SC12. Of course, not that it needs to convince us that it will be a scientific powerhouse..

The Blue Waters saga began back in 2007 when the NSF funded the super to the tune of $208 million. At the time, IBM was at the heart of the project but refunded their payments for Blue Waters system  after looking at the cost versus return equation. Cray was later selected to take over the project with a $188 million contract that would lead the super into completion.

In the year since the video below was filmed, work on the system was completed and Blue Waters was installed at NCSA. The 11.6 petaflops (peak) supercomputer contains 237 XE cabinets, each with 24 blade assemblies, and 32 cabinets of the Cray XK6 supercomputer with NVIDIA Tesla GPU computing capability.

Currently available in “friendly-user” mode for NCSA-approved teams, Blue Waters provides sustained performance of 1 petaflop or more on a range of real-world science and engineering applications.

“Blue Waters is an example of a high-risk, high-reward research infrastructure project that will enable NSF to achieve its mission of funding basic research at the frontiers of science,” said NSF Acting Director Cora Marrett.  ”Its impact on science and engineering discoveries and innovation, as well as on national priorities, such as health, safety and well-being, will be extraordinary.”

What follows are a few examples of the exciting and promising research on Blue Waters (following provided by the National Science Foundation).

Modeling HIV

Blue Waters is enabling Klaus Schulten and his team at UIUC to describe the HIV genome and its behavior in minute detail, through computations that require the simulations of more than 60 million atoms.  They just published a paper in PLOS Pathogens touting an early discovery–not (yet) the structure of the HIV virus, but that of a smaller virus, which could only be achieved through a 10 million atom, molecular dynamics simulation, inconceivable before Blue Waters. The team is using Blue Waters to investigate complex and fundamental molecular dynamics problems requiring atomic level simulations that are 10 to 100 times larger than those modeled to date, providing unprecedented insights.

Global Climate Change

Also featured at the dedication event, Cristiana Stan and James Kinter of George Mason University are using Blue Waters to engage in topical research on the role of clouds in modeling the global climate system during present conditions and in future climate change scenarios.

Earthquake Prediction

A team at the Southern California Earthquake Center, led by Thomas Jordan, is carrying out large-scale, high-resolution earthquake simulations that incorporate the entire Los Angeles basin, including all natural and human-built infrastructure, requiring orders of magnitude more computing power than studies done to date. Their work will provide better seismic hazard assessments and inform safer building codes:  Preparing for the Big One.

Flood Assessment, Drought Monitoring, and Resource Management

Engineering Professor Patrick Reed and his team from Penn State, Princeton and the Aerospace Corporation, are using Blue Waters to transform understanding and optimization of space-based Earth science satellite constellation designs.  “Blue Waters has fundamentally changed the scale and scope of the questions we can explore,” he said.  “Our hope is that the answers we discover will enhance flood assessment, drought monitoring, and the management of water resources in large river basins world-wide.”

Fundamental Properties of Nature

Robert Sugar, professor of physics at the University of California, Santa Barbara is using Blue Waters to more fully understand the fundamental laws of nature and to glean knowledge of the early development of the universe. ”Blue Waters packs a one-two punch,” said Sugar, “Blue Waters enables us to perform the most detailed and realistic simulations of sub-atomic particles and their interactions to date. Studies such as these are a global endeavor, and the large data sets produced on Blue Waters will be shared with researchers worldwide for further discoveries.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Watch Nvidia’s GTC21 Keynote with Jensen Huang Livestreamed Here at HPCwire

April 9, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U.S. Entity List bars U.S. firms from supplying key technolog Read more…

Argonne Supercomputing Supports Caterpillar Engine Design

April 8, 2021

Diesel fuels still account for nearly ten percent of all energy-related U.S. carbon emissions – most of them from heavy-duty vehicles like trucks and construction equipment. Energy efficiency is key to these machines, Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new training and inference servers that will power the upcoming Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

What’s New in HPC Research: Tundra, Fugaku, µHPC & More

April 6, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

RIKEN’s Ongoing COVID Research Includes New Vaccines, New Tests & More

April 6, 2021

RIKEN took the supercomputing world by storm last summer when it launched Fugaku – which became (and remains) the world’s most powerful supercomputer – ne Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

AI Systems Summit Keynote: Brace for System Level Heterogeneity Says de Supinski

April 1, 2021

Heterogeneous computing has quickly come to mean packing a couple of CPUs and one-or-many accelerators, mostly GPUs, onto the same node. Today, a one-such-node system has become the standard AI server offered by dozens of vendors. This is not to diminish the many advances... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire