NSF Official On New Supers, Data-Intensive Future

By Nicole Hemsoth

March 28, 2013

It has been a noteworthy week in the world of scientific and technical computing as two long-awaited supercomputers have been formally revved up for big research action.

The Dell-Intel scientific workhorse, Stampede, at TACC was ushered into the large-scale distributed research fold yesterday. And at the moment of this writing, the rather storied IBM and then Cray-backed Blue Waters system at NCSA is gearing up for its formal intro.

At the heart of both of these systems is some serious monetary backing from the National Science Foundation (NSF), which has committed several million to seeing both supers into the world—no matter how entangled the path. The organization funded the large majority of both projects in the name of furthering some critical human-centered scientific projects related to the environment, gemonics, disaster preparedness and epidemiology.

We chatted earlier this week with Alan Blatecky who directs the NSF’s Division of Advanced Cyberinfrastrcture about where these supers fit into the overarching mission of the NSF–and what the future looks like as applications require systems that are as “big data” ready as they are computationally robust.

Blatecky reiterated that from an NSF standpoint, these are two major investments in HPC, but they aren’t necessarily related in terms of anticipated use or application types. As he told us, the two systems are designed for quite different purposes.

One the one hand, the massive Stampede will cater to a large number of users with an emphasis on boosting the breadth of applications—not to mention extending what those extended apps are able to crunch. Blue Waters, on the other hand, will focus on a much smaller number of users, perhaps as many as a dozen, who have very deep, specific research applications.

While grappling with multiple users across a distributed system like Stampede and its XSEDE base is never simple, there are far more pressing challenges. In addition to pointing to extensive application retooling that needs to happen, especially on Blue Waters, there was one phrase we heard several times–“big data”.

The ability to take advantage of the large number of cores on a machine like Blue Waters is one of the biggest challenges user will face, says Blatecky, who points to how his organization is providing support on the programming and computer science front to aid domain specialist scientists. He said that going forward, the systems that will shine for the “big science” endeavors of the NSF will be those that can strike a balance between being data-intensive systems while retaining the computational power of massive numbers of cores, some of which are being pushed by accelerators and co-processors.

As Blatecky detailed, “Our point of view at the NSF is focused on the broader base of scientific users. We’re interested in the data-intensive computational requirements, which is part of what’s unique about Blue Waters. It has that needed balance between power, memory and storage to address both the data-intensive and computationally-intensive applications.”

When asked about the supercomputing goals the NSF wants to support over the next five years, Blatecky said that the real mission is to support a broader group of scientific users, especially those working in hot applications like genomics, materials science and environmental research areas. Most of their plans revolve around socially-oriented missions, including studies to predict earthquakes, flood outcomes, disaster response situations, and medically-driven research on the HIV and epidemic modeling fronts.

We also talked briefly about how HPC as we know it–and the NSF funds it–could change over the next five years. “I don’t know what it will be,” he noted, but he has no doubt that the performance-driven architectures might not be enough to keep up with the very real data explosion across real science applications unless they strike that memory/storage/power balance that Blue Waters has.

While not all HPC application are necessarily hugely data-intensive, a look down the list of applications reveals some of the highest data volume-driven research areas in science, particularly around medical and earth sciences projects. TACC, for instance, will now be the center of some cutting-edge earthquake, environmental and ecological research as scientists from around the world bring their best and brightest ideas –not to mention an unprecedented level of data–to the common table of the shared resource.

As TACC Director Jay Boisseau stated upon the formal announcement of Stampede yesterday, the system has been “designed to support a large, diverse research community. We are as excited about Stampede’s comprehensive capabilities and its high usability as we are of its tremendous performance.” On that note, 90% of TACC’s new powerhouse will be dedicated to the XSEDE program, which is a unified virtualized system that lets global scientists tap into powerful systems, new data wells and computational tools through one hub.

TACC will tap into the remaining horsepower for larger goals within its own center and in the University of Texas research community. And there is certainly some power to the system. As TACC described cleanly in their own statement on the specs, the Dell and Intel system boasts the following points of pride:

Stampede system components are connected via a fat-tree, FDR InfiniBand interconnect. One hundred and sixty compute racks house compute nodes with dual, eight-core sockets, and feature the new Intel Xeon Phi coprocessors. Additional racks house login, I/O, big-memory, and general hardware management nodes. Each compute node is provisioned with local storage. A high-speed Lustre file system is backed by 76 I/O servers. Stampede also contains 16 large memory nodes, each with 1 TB of RAM and 32 cores, and 128 standard compute nodes, each with an NVIDIA Kepler K20 GPU, giving users access to large shared-memory computing and remote visualization capabilities, respectively. Users will interact with the system via multiple dedicated login servers, and a suite of high-speed data servers. The cluster resource manager for job submission and scheduling will be SLURM (Simple Linux Utility for Resource Management).

Unlike Stampede, which is expected to make a top 5 showing on the Top 500m Blue Waters will not be benchmarking for reasons NCSA’s Bill Kramer explained to us in detail right around SC12. Of course, not that it needs to convince us that it will be a scientific powerhouse..

The Blue Waters saga began back in 2007 when the NSF funded the super to the tune of $208 million. At the time, IBM was at the heart of the project but refunded their payments for Blue Waters system  after looking at the cost versus return equation. Cray was later selected to take over the project with a $188 million contract that would lead the super into completion.

In the year since the video below was filmed, work on the system was completed and Blue Waters was installed at NCSA. The 11.6 petaflops (peak) supercomputer contains 237 XE cabinets, each with 24 blade assemblies, and 32 cabinets of the Cray XK6 supercomputer with NVIDIA Tesla GPU computing capability.

Currently available in “friendly-user” mode for NCSA-approved teams, Blue Waters provides sustained performance of 1 petaflop or more on a range of real-world science and engineering applications.

“Blue Waters is an example of a high-risk, high-reward research infrastructure project that will enable NSF to achieve its mission of funding basic research at the frontiers of science,” said NSF Acting Director Cora Marrett.  ”Its impact on science and engineering discoveries and innovation, as well as on national priorities, such as health, safety and well-being, will be extraordinary.”

What follows are a few examples of the exciting and promising research on Blue Waters (following provided by the National Science Foundation).

Modeling HIV

Blue Waters is enabling Klaus Schulten and his team at UIUC to describe the HIV genome and its behavior in minute detail, through computations that require the simulations of more than 60 million atoms.  They just published a paper in PLOS Pathogens touting an early discovery–not (yet) the structure of the HIV virus, but that of a smaller virus, which could only be achieved through a 10 million atom, molecular dynamics simulation, inconceivable before Blue Waters. The team is using Blue Waters to investigate complex and fundamental molecular dynamics problems requiring atomic level simulations that are 10 to 100 times larger than those modeled to date, providing unprecedented insights.

Global Climate Change

Also featured at the dedication event, Cristiana Stan and James Kinter of George Mason University are using Blue Waters to engage in topical research on the role of clouds in modeling the global climate system during present conditions and in future climate change scenarios.

Earthquake Prediction

A team at the Southern California Earthquake Center, led by Thomas Jordan, is carrying out large-scale, high-resolution earthquake simulations that incorporate the entire Los Angeles basin, including all natural and human-built infrastructure, requiring orders of magnitude more computing power than studies done to date. Their work will provide better seismic hazard assessments and inform safer building codes:  Preparing for the Big One.

Flood Assessment, Drought Monitoring, and Resource Management

Engineering Professor Patrick Reed and his team from Penn State, Princeton and the Aerospace Corporation, are using Blue Waters to transform understanding and optimization of space-based Earth science satellite constellation designs.  “Blue Waters has fundamentally changed the scale and scope of the questions we can explore,” he said.  “Our hope is that the answers we discover will enhance flood assessment, drought monitoring, and the management of water resources in large river basins world-wide.”

Fundamental Properties of Nature

Robert Sugar, professor of physics at the University of California, Santa Barbara is using Blue Waters to more fully understand the fundamental laws of nature and to glean knowledge of the early development of the universe. ”Blue Waters packs a one-two punch,” said Sugar, “Blue Waters enables us to perform the most detailed and realistic simulations of sub-atomic particles and their interactions to date. Studies such as these are a global endeavor, and the large data sets produced on Blue Waters will be shared with researchers worldwide for further discoveries.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This