NSF Official On New Supers, Data-Intensive Future

By Nicole Hemsoth

March 28, 2013

It has been a noteworthy week in the world of scientific and technical computing as two long-awaited supercomputers have been formally revved up for big research action.

The Dell-Intel scientific workhorse, Stampede, at TACC was ushered into the large-scale distributed research fold yesterday. And at the moment of this writing, the rather storied IBM and then Cray-backed Blue Waters system at NCSA is gearing up for its formal intro.

At the heart of both of these systems is some serious monetary backing from the National Science Foundation (NSF), which has committed several million to seeing both supers into the world—no matter how entangled the path. The organization funded the large majority of both projects in the name of furthering some critical human-centered scientific projects related to the environment, gemonics, disaster preparedness and epidemiology.

We chatted earlier this week with Alan Blatecky who directs the NSF’s Division of Advanced Cyberinfrastrcture about where these supers fit into the overarching mission of the NSF–and what the future looks like as applications require systems that are as “big data” ready as they are computationally robust.

Blatecky reiterated that from an NSF standpoint, these are two major investments in HPC, but they aren’t necessarily related in terms of anticipated use or application types. As he told us, the two systems are designed for quite different purposes.

One the one hand, the massive Stampede will cater to a large number of users with an emphasis on boosting the breadth of applications—not to mention extending what those extended apps are able to crunch. Blue Waters, on the other hand, will focus on a much smaller number of users, perhaps as many as a dozen, who have very deep, specific research applications.

While grappling with multiple users across a distributed system like Stampede and its XSEDE base is never simple, there are far more pressing challenges. In addition to pointing to extensive application retooling that needs to happen, especially on Blue Waters, there was one phrase we heard several times–“big data”.

The ability to take advantage of the large number of cores on a machine like Blue Waters is one of the biggest challenges user will face, says Blatecky, who points to how his organization is providing support on the programming and computer science front to aid domain specialist scientists. He said that going forward, the systems that will shine for the “big science” endeavors of the NSF will be those that can strike a balance between being data-intensive systems while retaining the computational power of massive numbers of cores, some of which are being pushed by accelerators and co-processors.

As Blatecky detailed, “Our point of view at the NSF is focused on the broader base of scientific users. We’re interested in the data-intensive computational requirements, which is part of what’s unique about Blue Waters. It has that needed balance between power, memory and storage to address both the data-intensive and computationally-intensive applications.”

When asked about the supercomputing goals the NSF wants to support over the next five years, Blatecky said that the real mission is to support a broader group of scientific users, especially those working in hot applications like genomics, materials science and environmental research areas. Most of their plans revolve around socially-oriented missions, including studies to predict earthquakes, flood outcomes, disaster response situations, and medically-driven research on the HIV and epidemic modeling fronts.

We also talked briefly about how HPC as we know it–and the NSF funds it–could change over the next five years. “I don’t know what it will be,” he noted, but he has no doubt that the performance-driven architectures might not be enough to keep up with the very real data explosion across real science applications unless they strike that memory/storage/power balance that Blue Waters has.

While not all HPC application are necessarily hugely data-intensive, a look down the list of applications reveals some of the highest data volume-driven research areas in science, particularly around medical and earth sciences projects. TACC, for instance, will now be the center of some cutting-edge earthquake, environmental and ecological research as scientists from around the world bring their best and brightest ideas –not to mention an unprecedented level of data–to the common table of the shared resource.

As TACC Director Jay Boisseau stated upon the formal announcement of Stampede yesterday, the system has been “designed to support a large, diverse research community. We are as excited about Stampede’s comprehensive capabilities and its high usability as we are of its tremendous performance.” On that note, 90% of TACC’s new powerhouse will be dedicated to the XSEDE program, which is a unified virtualized system that lets global scientists tap into powerful systems, new data wells and computational tools through one hub.

TACC will tap into the remaining horsepower for larger goals within its own center and in the University of Texas research community. And there is certainly some power to the system. As TACC described cleanly in their own statement on the specs, the Dell and Intel system boasts the following points of pride:

Stampede system components are connected via a fat-tree, FDR InfiniBand interconnect. One hundred and sixty compute racks house compute nodes with dual, eight-core sockets, and feature the new Intel Xeon Phi coprocessors. Additional racks house login, I/O, big-memory, and general hardware management nodes. Each compute node is provisioned with local storage. A high-speed Lustre file system is backed by 76 I/O servers. Stampede also contains 16 large memory nodes, each with 1 TB of RAM and 32 cores, and 128 standard compute nodes, each with an NVIDIA Kepler K20 GPU, giving users access to large shared-memory computing and remote visualization capabilities, respectively. Users will interact with the system via multiple dedicated login servers, and a suite of high-speed data servers. The cluster resource manager for job submission and scheduling will be SLURM (Simple Linux Utility for Resource Management).

Unlike Stampede, which is expected to make a top 5 showing on the Top 500m Blue Waters will not be benchmarking for reasons NCSA’s Bill Kramer explained to us in detail right around SC12. Of course, not that it needs to convince us that it will be a scientific powerhouse..

The Blue Waters saga began back in 2007 when the NSF funded the super to the tune of $208 million. At the time, IBM was at the heart of the project but refunded their payments for Blue Waters system  after looking at the cost versus return equation. Cray was later selected to take over the project with a $188 million contract that would lead the super into completion.

In the year since the video below was filmed, work on the system was completed and Blue Waters was installed at NCSA. The 11.6 petaflops (peak) supercomputer contains 237 XE cabinets, each with 24 blade assemblies, and 32 cabinets of the Cray XK6 supercomputer with NVIDIA Tesla GPU computing capability.

Currently available in “friendly-user” mode for NCSA-approved teams, Blue Waters provides sustained performance of 1 petaflop or more on a range of real-world science and engineering applications.

“Blue Waters is an example of a high-risk, high-reward research infrastructure project that will enable NSF to achieve its mission of funding basic research at the frontiers of science,” said NSF Acting Director Cora Marrett.  ”Its impact on science and engineering discoveries and innovation, as well as on national priorities, such as health, safety and well-being, will be extraordinary.”

What follows are a few examples of the exciting and promising research on Blue Waters (following provided by the National Science Foundation).

Modeling HIV

Blue Waters is enabling Klaus Schulten and his team at UIUC to describe the HIV genome and its behavior in minute detail, through computations that require the simulations of more than 60 million atoms.  They just published a paper in PLOS Pathogens touting an early discovery–not (yet) the structure of the HIV virus, but that of a smaller virus, which could only be achieved through a 10 million atom, molecular dynamics simulation, inconceivable before Blue Waters. The team is using Blue Waters to investigate complex and fundamental molecular dynamics problems requiring atomic level simulations that are 10 to 100 times larger than those modeled to date, providing unprecedented insights.

Global Climate Change

Also featured at the dedication event, Cristiana Stan and James Kinter of George Mason University are using Blue Waters to engage in topical research on the role of clouds in modeling the global climate system during present conditions and in future climate change scenarios.

Earthquake Prediction

A team at the Southern California Earthquake Center, led by Thomas Jordan, is carrying out large-scale, high-resolution earthquake simulations that incorporate the entire Los Angeles basin, including all natural and human-built infrastructure, requiring orders of magnitude more computing power than studies done to date. Their work will provide better seismic hazard assessments and inform safer building codes:  Preparing for the Big One.

Flood Assessment, Drought Monitoring, and Resource Management

Engineering Professor Patrick Reed and his team from Penn State, Princeton and the Aerospace Corporation, are using Blue Waters to transform understanding and optimization of space-based Earth science satellite constellation designs.  “Blue Waters has fundamentally changed the scale and scope of the questions we can explore,” he said.  “Our hope is that the answers we discover will enhance flood assessment, drought monitoring, and the management of water resources in large river basins world-wide.”

Fundamental Properties of Nature

Robert Sugar, professor of physics at the University of California, Santa Barbara is using Blue Waters to more fully understand the fundamental laws of nature and to glean knowledge of the early development of the universe. ”Blue Waters packs a one-two punch,” said Sugar, “Blue Waters enables us to perform the most detailed and realistic simulations of sub-atomic particles and their interactions to date. Studies such as these are a global endeavor, and the large data sets produced on Blue Waters will be shared with researchers worldwide for further discoveries.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in advanci Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

ESnet Now Moving More Than 1 Petabyte/wk

December 12, 2017

Optimizing ESnet (Energy Sciences Network), the world's fastest network for science, is an ongoing process. Recently a two-year collaboration by ESnet users – the Petascale DTN Project – achieved its ambitious goal t Read more…

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition. We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks. Read more…

By Dan Olds

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This