HPC in the Cloud Research Roundup

By Tiffany Trader

March 29, 2013

Our HPC cloud research stories are hand-selected from leading science centers, prominent journals and relevant conference proceedings. The top piece this week lays out a lightweight approach to implementing virtual machine monitors. Other items explore an innovative parallel cloud storage system, HPC-to-cloud migration, anywhere-anytime cluster monitoring, and a framework for cloud storage.

A Lightweight VMM for a Multicore Era

While traditional virtualization, using virtual machine monitors (VMMs) holds many efficiency advantages, the HPC community has generally shied away from the technology because of the associated performance overhead and the increased potential for bugs and other vulnerabilities. A team of researchers from Xi’an Jiaotong University in China is tackling these challenges with a novel lightweight approach to the creation of VMMs.

They note: “As resources in a multi-core server increase to more than adequate in the future, virtualization is not necessary although it provides convenience for cloud computing. Based on the above observations, this paper presents an alternative way for constructing a VMM: configuring a booting interface instead of virtualization technology.”

Their paper, Lightweight VMM on Many Core for High Performance Computing,” describes their experience with a lightweight virtual machine monitor they call OSV.

“Rather than virtualizing resources in the computer, OSV only virtualizes the multiprocessor and memory configuration interfaces,” they state. “Operating systems access the resources allocated by OSV directly without the intervention of the VMM, and OSV just controls which part of the resources are accessible to an operating system.”

OSV has the ability to host multiple Linux kernels with very little impact on performance, the team explains. It uses only 6 hyper-calls, while Linux, running on top of OSV, is intercepted only for inter-processor interrupts. The resource isolation is carried out with hardware-assist virtualization and the resource sharing is controlled by distributed protocols embedded in the operating systems.

Their test cases uses a prototype of OSV on 32-core Opteron-based servers with SVM and cache-coherent NUMA architectures. The setup supports up to 8 Linux kernels on the server with less than 10 lines of code modifications to the Linux kernel. With only 8,000 lines of code, OSV supports a streamlined tuning and debugging process. The final result of the experiment showed a 23.7 percent performance increase over Xen VMM.

Next >>

HPC Clouds – Cloud Storage with OpenStack Swift

A team from Los Alamos National Laboratory has revealed how they used the Swift Object Store from OpenStack as their disk-based cloud storage system. For the team, Swift has provided an “open source software for creating redundant, scalable object storage using clusters of standardized servers to store petabytes of accessible data.”

At the heart of this effort is to address growing HPC requirements on the archiving side. They note that just buying more tape or hard drives to keep up with demand is not a viable solution and they believe that “merging advanced features from both HPC systems and cloud systems is a promising direction.”

They reiterate that this is not a file system or real-time storage approach, but rather a “long term storage system for a more permanent type of static data that can be retrieved, leveraged and then updated if necessary.”

As the team behind the project states,

At LANL, we have worked on high-performance computing (HPC) systems for many years. The LANL parallel log file system (PLFS) has demonstrated its superior capability for the conversion of logical N-to-1 parallel I/O operations into physical N-to-N parallel I/O operations on HPC production systems. In this article, we describe the leveraging of the scaling capability of cloud object storage systems and the transformative parallel I/O feature (Fig. 1) of the LANL PLFS and the building of a parallel cloud storage system.

Next >>

Bioinformatics in the Cloud

A new case study at IBM developerWorks lays out the steps involved in porting a massively parallel bioinformatics pipeline to the cloud. The transferring, stabilizing, and managing of massive data sets are all addressed by the team of IBM architects and engineers as are the architectural decisions that were necessary for this transformation.

Recent breakthroughs in genomics have significantly reduced the cost of short-read genomic sequencing (determining the order of the nucleotide bases in a molecule of DNA),” they write. “Therefore, to a large extent, the task of full genomic reassembly – often referred to assecondary analysis (and familiar to those with parallel processing experience) – has become an IT challenge in which the issues are about transferring massive amounts of data over WANs and LANs, managing it in a distributed environment, ensuring stability of massively parallel processing pipelines, and containing the processing cost.”

In describing their experience porting a commercial HPC workload for genomic reassembly to a cloud environment, the authors say it’s like going from a pure HPC environment to a more big data type of approach.

The impetus for the move is a familiar one: the HPC infrastructure was approaching capacity and the volume of the analysis work was expected to rise substantially. So the goal of the project was to test the feasibility of a massively scalable cloud infrastructure while keeping costs down.

Next >>

Anywhere Anytime Cluster Monitoring

A trio of computer scientists from Shandong University in Jinan, China, are exploring the feasibility of anywhere, anytime cluster monitoring. More specifically, they are working to design and implement a cluster monitoring system based on Android.

The team starts with the view that high performance computing (HPC) has been democratized to the point that HPC clusters have become an important resource for many scientific fields, including graphics, biology, physics, climate research, and many others. Still, depending on local funding realities, the availability of such machines is almost universally constrained. In light of this, monitoring becomes an essential task necessary for the efficient utilization and management of limited resources. However, as the researchers observe, traditional cluster monitoring systems demonstrate poor mobility, which stymies proper management.

The authors are seeking to improve the flexibility of monitoring systems and improve the communication between administrators. They assert that the mobile cluster monitoring system outlined in their paper “will make it possible to monitor the whole cluster anywhere and anytime to allow administrators to manage, diagnose, and troubleshoot cluster issues more accurately and promptly.”

The system they developed is based on the Android platform, the brainchild of Google, and built on open source monitoring tools, Gaglia and Nagios. The design uses a client-server model, where the server probes the data via monitoring tools and produces a global view of the data. The mobile client gets the monitoring packages by Socket. Then, the cluster’s status is displayed on the Android application.

Their work was published as a chapter in the book, Pervasive Computing and the Networked World.

Next >>

A Framework for Cloud Storage

UK computer scientists Victor Chang, Robert John Walters and Gary Wills set out to explore the topic of cloud storage and bioinformatics in a private cloud deployment. They’ve written a paper about their experience to serve as a resource for other researchers with data-intensive compute needs who are interested in analyzing the benefits of a cloud model.

Among the many benefits of the cloud model are its cost-savings potential, agility, efficiency, resource consolidation, business opportunities and possible energy savings. Despite the inherent attractiveness, there are still barriers to overcome, and one of these, according to the authors is the need for a standard or framework to manage both operations and IT services.

They write that “this framework needs to provide the structure necessary to ensure any cloud implementation meets the business needs of industry and academia and include recommendations of best practices which can be adapted for different domains and platforms.”

Their work examines service portability for a private cloud deployment. Storage, backup and data migration and data recovery are all addressed. The paper presents a detailed case study about cloud storage and bioinformatics services developed as part of the Cloud Computing Adoption Framework (CCAF). In order to illustrate the benefits of CCAF the authors provide several bioinformatics examples, including tumor modeling, brain imaging, insulin molecules and simulations for medical training. They believe that their proposed solution offers cost reduction, time-savings and user friendliness.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Answered Prayers for High Frequency Traders? Latency Cut to 20 Nanoseconds

January 23, 2017

“You can buy your way out of bandwidth problems. But latency is divine.”

This sentiment, from Intel Technical Computing Group CTO Mark Seager, seems as old as the Bible, a truth universally acknowledged. Read more…

By Doug Black

CMU’s Latest “Card Shark” – Libratus – is Beating the Poker Pros (Again)

January 20, 2017

It’s starting to look like Carnegie Mellon University has a gambling problem – can’t stay away from the poker table. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Enhancing Patient Care with Next-Generation Sequencing

In the ever-evolving world of life sciences, speed, accuracy, and savings are more important than ever. Today’s scientists and healthcare professionals are leveraging high-performance computing (HPC) solutions to solve the world’s greatest health problems and accelerate the diagnoses and treatment of a variety of medical conditions. Read more…

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Answered Prayers for High Frequency Traders? Latency Cut to 20 Nanoseconds

January 23, 2017

“You can buy your way out of bandwidth problems. But latency is divine.”

This sentiment, from Intel Technical Computing Group CTO Mark Seager, seems as old as the Bible, a truth universally acknowledged. Read more…

By Doug Black

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This