HPC in the Cloud Research Roundup

By Tiffany Trader

March 29, 2013

Our HPC cloud research stories are hand-selected from leading science centers, prominent journals and relevant conference proceedings. The top piece this week lays out a lightweight approach to implementing virtual machine monitors. Other items explore an innovative parallel cloud storage system, HPC-to-cloud migration, anywhere-anytime cluster monitoring, and a framework for cloud storage.

A Lightweight VMM for a Multicore Era

While traditional virtualization, using virtual machine monitors (VMMs) holds many efficiency advantages, the HPC community has generally shied away from the technology because of the associated performance overhead and the increased potential for bugs and other vulnerabilities. A team of researchers from Xi’an Jiaotong University in China is tackling these challenges with a novel lightweight approach to the creation of VMMs.

They note: “As resources in a multi-core server increase to more than adequate in the future, virtualization is not necessary although it provides convenience for cloud computing. Based on the above observations, this paper presents an alternative way for constructing a VMM: configuring a booting interface instead of virtualization technology.”

Their paper, Lightweight VMM on Many Core for High Performance Computing,” describes their experience with a lightweight virtual machine monitor they call OSV.

“Rather than virtualizing resources in the computer, OSV only virtualizes the multiprocessor and memory configuration interfaces,” they state. “Operating systems access the resources allocated by OSV directly without the intervention of the VMM, and OSV just controls which part of the resources are accessible to an operating system.”

OSV has the ability to host multiple Linux kernels with very little impact on performance, the team explains. It uses only 6 hyper-calls, while Linux, running on top of OSV, is intercepted only for inter-processor interrupts. The resource isolation is carried out with hardware-assist virtualization and the resource sharing is controlled by distributed protocols embedded in the operating systems.

Their test cases uses a prototype of OSV on 32-core Opteron-based servers with SVM and cache-coherent NUMA architectures. The setup supports up to 8 Linux kernels on the server with less than 10 lines of code modifications to the Linux kernel. With only 8,000 lines of code, OSV supports a streamlined tuning and debugging process. The final result of the experiment showed a 23.7 percent performance increase over Xen VMM.

Next >>

HPC Clouds – Cloud Storage with OpenStack Swift

A team from Los Alamos National Laboratory has revealed how they used the Swift Object Store from OpenStack as their disk-based cloud storage system. For the team, Swift has provided an “open source software for creating redundant, scalable object storage using clusters of standardized servers to store petabytes of accessible data.”

At the heart of this effort is to address growing HPC requirements on the archiving side. They note that just buying more tape or hard drives to keep up with demand is not a viable solution and they believe that “merging advanced features from both HPC systems and cloud systems is a promising direction.”

They reiterate that this is not a file system or real-time storage approach, but rather a “long term storage system for a more permanent type of static data that can be retrieved, leveraged and then updated if necessary.”

As the team behind the project states,

At LANL, we have worked on high-performance computing (HPC) systems for many years. The LANL parallel log file system (PLFS) has demonstrated its superior capability for the conversion of logical N-to-1 parallel I/O operations into physical N-to-N parallel I/O operations on HPC production systems. In this article, we describe the leveraging of the scaling capability of cloud object storage systems and the transformative parallel I/O feature (Fig. 1) of the LANL PLFS and the building of a parallel cloud storage system.

Next >>

Bioinformatics in the Cloud

A new case study at IBM developerWorks lays out the steps involved in porting a massively parallel bioinformatics pipeline to the cloud. The transferring, stabilizing, and managing of massive data sets are all addressed by the team of IBM architects and engineers as are the architectural decisions that were necessary for this transformation.

Recent breakthroughs in genomics have significantly reduced the cost of short-read genomic sequencing (determining the order of the nucleotide bases in a molecule of DNA),” they write. “Therefore, to a large extent, the task of full genomic reassembly – often referred to assecondary analysis (and familiar to those with parallel processing experience) – has become an IT challenge in which the issues are about transferring massive amounts of data over WANs and LANs, managing it in a distributed environment, ensuring stability of massively parallel processing pipelines, and containing the processing cost.”

In describing their experience porting a commercial HPC workload for genomic reassembly to a cloud environment, the authors say it’s like going from a pure HPC environment to a more big data type of approach.

The impetus for the move is a familiar one: the HPC infrastructure was approaching capacity and the volume of the analysis work was expected to rise substantially. So the goal of the project was to test the feasibility of a massively scalable cloud infrastructure while keeping costs down.

Next >>

Anywhere Anytime Cluster Monitoring

A trio of computer scientists from Shandong University in Jinan, China, are exploring the feasibility of anywhere, anytime cluster monitoring. More specifically, they are working to design and implement a cluster monitoring system based on Android.

The team starts with the view that high performance computing (HPC) has been democratized to the point that HPC clusters have become an important resource for many scientific fields, including graphics, biology, physics, climate research, and many others. Still, depending on local funding realities, the availability of such machines is almost universally constrained. In light of this, monitoring becomes an essential task necessary for the efficient utilization and management of limited resources. However, as the researchers observe, traditional cluster monitoring systems demonstrate poor mobility, which stymies proper management.

The authors are seeking to improve the flexibility of monitoring systems and improve the communication between administrators. They assert that the mobile cluster monitoring system outlined in their paper “will make it possible to monitor the whole cluster anywhere and anytime to allow administrators to manage, diagnose, and troubleshoot cluster issues more accurately and promptly.”

The system they developed is based on the Android platform, the brainchild of Google, and built on open source monitoring tools, Gaglia and Nagios. The design uses a client-server model, where the server probes the data via monitoring tools and produces a global view of the data. The mobile client gets the monitoring packages by Socket. Then, the cluster’s status is displayed on the Android application.

Their work was published as a chapter in the book, Pervasive Computing and the Networked World.

Next >>

A Framework for Cloud Storage

UK computer scientists Victor Chang, Robert John Walters and Gary Wills set out to explore the topic of cloud storage and bioinformatics in a private cloud deployment. They’ve written a paper about their experience to serve as a resource for other researchers with data-intensive compute needs who are interested in analyzing the benefits of a cloud model.

Among the many benefits of the cloud model are its cost-savings potential, agility, efficiency, resource consolidation, business opportunities and possible energy savings. Despite the inherent attractiveness, there are still barriers to overcome, and one of these, according to the authors is the need for a standard or framework to manage both operations and IT services.

They write that “this framework needs to provide the structure necessary to ensure any cloud implementation meets the business needs of industry and academia and include recommendations of best practices which can be adapted for different domains and platforms.”

Their work examines service portability for a private cloud deployment. Storage, backup and data migration and data recovery are all addressed. The paper presents a detailed case study about cloud storage and bioinformatics services developed as part of the Cloud Computing Adoption Framework (CCAF). In order to illustrate the benefits of CCAF the authors provide several bioinformatics examples, including tumor modeling, brain imaging, insulin molecules and simulations for medical training. They believe that their proposed solution offers cost reduction, time-savings and user friendliness.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This