HTC, Big Data and the God Particle

By Miha Ahronovitz

March 29, 2013

Who has seen the wind?

Neither I nor you:

But when the leaves hang trembling,

The wind is passing through.

— Christina Rossetti 1830–1894

The ancient sages say that a prophecy is conveyed in vision, in appearance, in sight, in revelation and in word. I often compare older predictions to what actually happens after the facts are known. For example I looked at IDC HPC predictions for 2010 in 2013 and I found them to be surprisingly accurate. HPCwire does not make prophecies, yet with astonishing intuition it captured all the significant events in performance computing for the last three decades.

The concept of High Throughput Computing (HTC) appeared on June 27, 1997, edition of HPCwire, during an interview with Miron Livny – a professor at University of Wisconsin, Madison – with Alan Beck, the HPCwire editor in chief at the time.

This month, NCSA’s (National Center for Supercomputing Applications) Advanced Computing Group (ACG) will begin testing Condor, a software system developed at the University of Wisconsin that promises to expand computing capabilities through efficient capture of cycles on idle machines. The software, operating within an HTC (High Throughput Computing) rather than a traditional HPC (High Performance Computing) paradigm, organizes machines into clusters, called pools, or collections of clusters called flocks, that can exchange resources. Condor then hunts for idle workstations to run jobs. When the owner resumes computing, Condor migrates the job to another machine.

In response to a question from Alan about the work they are doing at NCSA, Miron described the 1997 HTC plans:

“We play a dual role with respect to NCSA. On one hand, we’re a regional partner, with over 500 workstations here on campus. These will provide a source of cycles to NCSA and a testbed for scientists who would like to see how well their applications work in an HTC environment. On the other hand, we’re also an enabling technology, where our experience in building and maintaining Condor will contribute to the construction of the National Technology Grid. Thus, we hope we can soon move from a campus-wide to a nation-wide HTC system.”

By far the most enthusiastic response for HTC came from the high energy physics community. At that time, Fermilab in Batavia, 20 miles east of Chicago was the leading high energy physics facility. The Large Hadron Collider (LHC) at CERN was built from 1988 to 2008 and started operations in 2009. Before LHC, Fermilab’s Tevatron circular particle collider was the biggest in the world. For about thirty years, it was the number one particle collider serving high energy physics where the need for big data was prevalent long before this term became a media buzzword. On September 30, 2011, the Tevatron was closed during an emotional ceremony:

The Tevatron was the highest energy particle collider in the world until 2009, and is credited with discovering the top quark, two types of sigma baryon, the “Cascade B” Xi Baryon, and the “doubly strange” Omega-sub-b particle, as well as embarking on the hunt for the elusive “God particle,” throughout its storied history.

The Large Hadron Collider (LHC), which so far has cost nine billion dollars, just shut down for the next two years starting February 2013. This is called the long shut down (LS1) When it will reopen in 2015, it will start colliding protons at an unprecedented 14 TeV, (teraelectronvolt)

Scientists won’t be idle during the tunnel’s shutdown: CERN’s mass-storage systems are hanging onto 100 quadrillion bytes of data to analyze, most of which was acquired over the past year. This is equivalent to 700 years of high definition movies.

CERN Research Director Sergio Bertolucci says: “Other experiments here have ongoing analyses, so I’m looking forward to many interesting results emerging as LS1 progresses.”

OSG was created in response to the vast experience accumulated at Fermi Lab answering at the time the needs of high energy physics researchers. Since 2004, OSG and its underlying HTC technology proved itself “magna cum laude.” It directly contributed to the creation of the world’s largest computational grid at CERN, powerful enough to make the search for Higgs successful.

According to Lothar Bauerdick – OSG Executive Director – the name “Open Science Grid” was coined by Ruth Pordes during a walk in the vineyards around CERN in 2003. She is an associate head computing at Fermilab. An Oxford trained physicist – no matter what official title she holds – Ruth is recognized as the soul of OSG. Her 2004 slides from Condor Week sketched the first portrait of OSG to the outside world.

Another key contributor is Frank Wuerthwein, a star physics researcher from UC San Diego. He is “developing, deploying, and now operating a worldwide distributed computing system for high throughput computing with large data volumes expect to grow to Exabytes by 2020.” He is one of the most active evangelists for HTC and OSG and has the credibility because he himself is involved in the day-to-day search for dark matter.

The Open Science Grid (OSG) has access to over 60,000 processors without owning any one of them. The OSG is the real life National Science Grid, predicted in the HPCwire article sixteen years ago.

Next >>

In an interview with ATKearney – the management consulting group – Fermilab’s head of the Scientific Computing Division and a leading physicist searching for Higgs in America – Rob Roser said: “2012 has been the most exciting year in physics in the last 50 years with the confirmation of the God particle, but the computing advancements contributed significantly to this excitement.”

Roser says that big data is hard:

People who are successful at big data are those who are not overwhelmed by it. They are managing the data – the data’s not managing them.

The Higgs particle discovery is clearly explained in the abstract of this CERN paper from December 2012 signed by 2,932 Atlas collaborators:

Nearly 50 years ago, theoretical physicists proposed that a field permeates the universe and gives energy to the vacuum. This field was required to explain why some, but not all, fundamental particles have mass. The ATLAS experiment at the Large Hadron Collider at CERN has now observed the production of a new particle with a mass of 126 giga-electron volts and decay signatures consistent with those expected for the Higgs particle.

We are used to judge organizations in terms of ROI – return on investment. I would argue that the (ROI) of Higgs boson discovery is infinite. The relativity theory or Maxwell’s electromagnetic laws – just to mention randomly a few scientific breakthroughs – have infinite ROI. They generate wealth for many generations to come and for every citizen of the planet.

Figure 1 Open Science Grid real time usage http://display.grid.iu.edu/

Higgs particle research at the Large Hadron Collider generated in 2012, twenty five millions of gigabytes (23.8 petabytes which is approximated to 25 petabytes in popular media). The forecast increase is 20 percent annually.

Figure 2

“Nothing shocks me. I’m a scientist,” said Harrison Ford acting as Indiana Jones in Steven Spielberg’s 1981 movie Raiders of the Lost Ark.

Like Indiana Jones, CERN’s computer scientists tackled the challenge. They built an unprecedented massive grid, using the same HTC technology described in the 1997 article from HPCwire. The Worldwide LHC Computing Grid (WLCG) “is the world’s largest computing grid. It is based on two main grids – the European Grid Infrastructure in Europe, and Open Science Grid in the US – but has many associated regional and national grids (such as TWGrid in Taiwan and EU-IndiaGrid, which supports grid infrastructures across Europe and Asia).” CERN explains why this solution was selected:

This grid-based infrastructure is the most effective solution to the data-analysis challenge of the LHC, offering many advantages over a centralized system. Multiple copies of data can be kept at different sites, ensuring access for all scientists independent of geographical location; there is no single point of failure; computer centers in multiple time zones ease round-the-clock monitoring and the availability of expert support; and resources can be distributed across the world, for funding and sociological reasons.

It is about time to give HTC the credit. Without this technology, the Higgs boson particle would have been relegated to an elegant theory. Sooner or later, technological advances in computer science ought to be successful to prove the God particle exists. It so happened that the first breakthrough technology to get there is HTC.

Great physicists are like great prophets. Professor Higgs and his colleagues are among them. They detect “the unrevealed,” those whispers requiring great effort to comprehend. WLCG delivered the proof of their thought experiments, while they are still alive. Never mind Nobel prize speculations, this by itself is a huge reward. High Throughput Computing (HTC) and High Performance Computing (HPC) complement each other. This is a comment of Damien Hocking, the CTO of Corelium Software:

The logical progression of HTC is to keep improving until it can effectively process HPC workloads, and that’s where portability will come from. CPUs evolved as HTC devices and current software design presents HTC-like workloads to the OS (which is itself HTC software by design), but on a much shorter timescale. HPC workloads run today because the HTC architecture underneath is so efficient.

I asked Damien to elaborate:

My workstation has eight cores, and right now is running 110 processes and over 1,500 threads and is still responding quickly, even though I’m editing code, running a simulation, committing to Github and typing this, all at the same time. I’d argue that’s HTC, and that HPC today is realized by building and running it on top of the HTC platform that modern hardware and OS-es provide.

The Center for High Throughput Computing at University of Wisconsin is continuously adding new nodes. The latest addition is an HPC-capable node with 768 cores cluster with InfiniBand, using a SLURM scheduler and with HTCondor backfilling unused HPC cores with HTC jobs.

Many ask: “How do you determine if an application is suitable for HTC or HPC?” For the technical minded, there is a detailed presentation by Zach Miller from the University of Wisconsin. If you really are serious to start, there is an 2013 OSG User School. The website says:

“… you will learn to use high-throughput computing (HTC) systems – at your own campus or using the national Open Science Grid (OSG) – to run large-scale computing applications that are at the heart of today’s cutting-edge science … you will also go to the XSEDE13 Conference, July 22–25, in San Diego. This is a premier event for the high-performance computing (HPC) community, offering students a view into another approach to large-scale computing.”

CHTC and OSG leaderships executed the plan consistently and with remarkable skill. The 1997 dream of a 500 desktop grid transformed into the reality of WLCG grid designed to meet CERN’s unique needs. WLCG has in excess of 150,000 cores and growing.

Quoting the science fiction writer Arthur C. Clarke:

Every revolutionary idea seems to evoke three stages of reaction. They may be summed up by the phrases: (1) It’s completely impossible. (2) It’s possible, but it’s not worth doing. (3) I said it was a good idea all along.

And…

Any sufficiently advanced technology is indistinguishable from magic.

Will HTC technology for big data generate a new business like FaceBook or Google? Rob Roser says yes. The World Wide Web was invented by physicists at CERN, but other people took over. “I am perfectly happy to let corporate America and others take over,” he says, “and develop technology that we can use.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Leading Solution Providers

Contributors

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This