Why Big Data Needs InfiniBand to Continue Evolving

By Nicole Hemsoth

April 1, 2013

Increasingly, it’s a Big Data world we live in.  Just in case you’ve been living under a rock and need proof of that, a major retailer can use an unimaginable number of data points to predict the pregnancy of a teenage girl outside Minneapolis before she gets a chance to tell her family.  That’s just one example, but there are countless others that point to the idea that mining huge data volumes can uncover gold nuggets of actionable proportions (although sometimes they freak people out – for example that girl’s father). 

We’re still at the dawn of this Big Data era and as the market is showing, one-size-fits-all data processing is no longer adequate.  To take the next step in this evolution, specialized Big Data software can improve not only by using cloud computing, but also by utilizing specialized networking infrastructure, InfiniBand, from the supercomputing community.  Before understanding why, though, you need to understand the history of how we got to this Big Data world in the first place.

How Did We Get Here? The Birth of the Relational Database

1970 isn’t just the year of the Unix Epoch, it’s also the year that the granddaddy of all Relational Database (RDB) papers was written.  IBM Researcher E. F. Codd wrote “A Relational Model for Large Shared Data Banks” for Communications of the ACM magazine in June of that year, and it became the defining work on data layouts for decades.  Codd’s model would be refined over the next 40 years, but what he proposed evolved into a generic toolset for structuring and manipulating data that was used for everything from managing bank assets to storing food recipes.

This general-purpose data analysis software also ran exceptionally well on general-purpose computing hardware.  The two got along great, actually, since all you really needed was a disk big enough to handle the structured data and enough CPU and RAM to perform the queries.  In fact, some hardware manufacturers such as Hewlett-Packard would give away database software when you purchased the hardware to run it on.  For the Enterprise especially, the Relational Database was the killer app of the data center hardware business.

At this point, everybody was happily solving problems and making money.  Then something happened that changed everything and completely disrupted this ecosystem forever.  It was called Google.

Then Google Happened

During the Nixon Administration, copying the entire Internet was not a difficult problem given its diminutive size.  But this was not so by the late 1990s, when the first wave of search engines like Lycos and Alta Vista had supposedly solved the problem of finding information online.  Shortly thereafter, Google happened and disrupted not only the online search industry but also data processing.

It turns out that if you can keep a copy of the modern Internet at all times, you can do some amazing things in determining relevance and, therefore, return better search results.  However, you can’t use a traditional RDB to tackle that problem for several reasons.  First of all, to solve this problem you need to store a lot of data.  So much so, it becomes impractical to rely solely on vertical scaling by adding more disk/CPU/Ram to a system and a RDB does not scale horizontally very well.  Adding more machines to a RDB does not improve its execution or ability to store more data.  That disk/CPU/RAM marriage has been around for 40 years and it’s not easy to break apart.

Further, as the size of the data set in an RDB gets larger the query speed generally degrades.  For a financial services company querying trends on stock prices that may be acceptable, since that influences the time of a handful of analysts who can do something else while that processing is going on.  But for an Internet search company trying to deliver sub 3-second responses to millions of customers simultaneously that just won’t fly.

Finally, given the large data volumes and the query speed required for Internet searches, the necessity for data redundancy is implied since the data is needed at all times.  As such, the simple master-slave model employed by most RDB deployments over the last four decades is a lot less bullet proof than what is needed when you are trying to constantly copy the entire Internet.  One big mirror simply won’t cut it.

Distributed File Systems and Map/Reduce Change Everything

If Codd’s seminal RDB paper had grandchildren, they would be a pair of papers released by Google that described how they conquered their data problem.  Published in 2003, “The Google File System” by Sanjay Ghermawat, Howard Gobioff, and Shun-tak Leung described how a new way of storing data across many, many different machines provided a mechanism for dealing with huge volumes in a much more economical way than the traditional RDB. 

The follow-up paper from 2004 entitled, “MapReduce: Simplified Data Processing on Large Clusters” by Ghermawat and Jeffrey Dean further revealed that Google performs queries across its large, distributed data set by breaking up the problem into smaller parts, sending those smaller parts to nodes out on the distributed system (the Map step), and finally assembling the results of the smaller solution (the Reduce step) into a whole.

Together, these two papers created a data processing renaissance.  While RDBs still have their place, they are no longer the single solution to all problems in the data processing world.  For problems involving large data volumes in particular, solutions derived from these two papers have emerged over the past decade to give developers and architects far more choice than they had in the RDB exclusive world that existed previously.

Hadoop Democratizes Big Data; Now Where Are You Going to Run It?

The next logical step in this evolution in an era of Open Source programming was for somebody to take the theories laid out in these Google papers and transform them into a reality that everyone could use.  This is precisely what Doug Cutting and Michael J. Cafarella did, and they called the result Hadoop.  With Hadoop, anyone now had the software to tackle huge data volumes and perform sophisticated queries.  What not everybody could afford, however, was the hardware to run it on.

Enter cloud computing, specifically Infrastructure as a Service (IaaS).  Primarily invented by Amazon with its Amazon Web Services offering, anyone could lease the 100s if not 1000s of compute nodes necessary to run big Hadoop jobs instead of purchasing the physical machines necessary for the job.  Combine that idea with orchestration software from folks like OpsCode or Puppet Labs and you could automate the creation of your virtualized hardware, the installation and configuration of the Hadoop software, and the loading of large data volumes to minimize the costs of performing these queries.

Again, everybody is happily solving problems and making money.  But we aren’t done.  There’s another step to this evolution, and it’s happening now.

InfiniBand: Making Hadoop Faster and More Economical

Processing Hadoop and other Big Data queries on IaaS produces results, but slowly.  This combination is praised for the answers it can find but at the cost of reduced speed.  We saw a data processing revolution sparked by different software approaches than those pioneered in the 1970’s.   Better-performing Hadoop clusters, with all the network traffic they produce in their Map and Reduce steps, can be found by taking a similar approach with a different network infrastructure.

Ethernet, the most widely used network infrastructure technology today, has followed a path similar to that of RDBs.  Invented in 1980, Ethernet uses a hierarchal structure of subnets to string computers together on a network.  It is so common that, like RDBs 10 years ago, most people don’t think they have a choice of something different.

The performance problem with Ethernet comes in its basic structure.  With hierarchies of subnets connected by routers, network packets have exactly one path they can traverse between any two points on the network.  You can increase the size of the pipe between those two points slightly, but fundamentally you still just have the one path.

Born in the supercomputing community during the 21st Century, InfiniBand instead uses a grid system which enables multiple paths for network packets to traverse between two points.  Smart routing that knows what part of the grid is currently busy, akin to automobile traffic reporting found on smart phone map apps, keeps the flow of traffic throughout the system working optimally.  A typical Ethernet-based network runs at 1 Gigabit per second (Gb/s), and a fast one runs at 10 Gb/s.  A dual-channel InfiniBand network runs at 80 Gb/s, making it a great compliment to Map/Reduce steps on a Hadoop cluster.

We’ve seen how a software revolution getting us past the exclusive use of RDBs has enabled data mining that was previously unimaginable.  Open Source and cloud computing have made Big Data approachable to a wider audience.  Better speed, resulting in shorter query times and time reductions needed in leasing IaaS space, is achievable using public cloud providers offering InfiniBand.  This is the next step in the data processing revolution and the next generation of Cloud Computing services (also known as Cloud Computing 2.0) bring InfiniBand to the public cloud.  ProfitBricks is the first provider to offer supercomputing like performance to the public cloud at an affordable price.  Data is becoming democratized, and now High Performance Computing is as well.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Wondering How AI is Doing Versus Doctors?

September 26, 2017

With all the noise around AI’s potential in medicine, you may be wondering how well it is actually performing. No one knows the real answer - for one thing it is a moving target - but the IEEE Spectrum is attempting to Read more…

By John Russell

Cray Completes ClusterStor Deal, Sunsets Sonexion Brand

September 25, 2017

Having today completed the transaction and strategic partnership with Seagate announced back in July, Cray is now home to the ClusterStor line and will be sunsetting the Sonexion brand. This is not an acquisition; the ClusterStor assets are transferring from Seagate to Cray (minus the Seagate ClusterStor IBM Spectrum Scale product) and Cray is taking over support and maintenance for the entire ClusterStor base. Read more…

By Tiffany Trader

China’s TianHe-2A will Use Proprietary Accelerator and Boast 94 Petaflops Peak

September 25, 2017

The details of China’s upgrade to TianHe-2 (MilkyWay-2) – now TianHe-2A – were revealed last week at the Third International High Performance Computing Forum (IHPCF2017) in China. The TianHe-2A will use a proprieta Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

SC17 Preview: Invited Talk Lineup Includes Gordon Bell, Paul Messina and Many Others

September 25, 2017

With the addition of esteemed supercomputing pioneer Gordon Bell to its invited talk lineup, SC17 now boasts a total of 12 invited talks on its agenda. As SC explains, "Invited Talks are a premier component of the SC Read more…

By Tiffany Trader

Cray Completes ClusterStor Deal, Sunsets Sonexion Brand

September 25, 2017

Having today completed the transaction and strategic partnership with Seagate announced back in July, Cray is now home to the ClusterStor line and will be sunsetting the Sonexion brand. This is not an acquisition; the ClusterStor assets are transferring from Seagate to Cray (minus the Seagate ClusterStor IBM Spectrum Scale product) and Cray is taking over support and maintenance for the entire ClusterStor base. Read more…

By Tiffany Trader

China’s TianHe-2A will Use Proprietary Accelerator and Boast 94 Petaflops Peak

September 25, 2017

The details of China’s upgrade to TianHe-2 (MilkyWay-2) – now TianHe-2A – were revealed last week at the Third International High Performance Computing Fo Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

  • arrow
  • Click Here for More Headlines
  • arrow
Share This