Why Big Data Needs InfiniBand to Continue Evolving

By Nicole Hemsoth

April 1, 2013

Increasingly, it’s a Big Data world we live in.  Just in case you’ve been living under a rock and need proof of that, a major retailer can use an unimaginable number of data points to predict the pregnancy of a teenage girl outside Minneapolis before she gets a chance to tell her family.  That’s just one example, but there are countless others that point to the idea that mining huge data volumes can uncover gold nuggets of actionable proportions (although sometimes they freak people out – for example that girl’s father). 

We’re still at the dawn of this Big Data era and as the market is showing, one-size-fits-all data processing is no longer adequate.  To take the next step in this evolution, specialized Big Data software can improve not only by using cloud computing, but also by utilizing specialized networking infrastructure, InfiniBand, from the supercomputing community.  Before understanding why, though, you need to understand the history of how we got to this Big Data world in the first place.

How Did We Get Here? The Birth of the Relational Database

1970 isn’t just the year of the Unix Epoch, it’s also the year that the granddaddy of all Relational Database (RDB) papers was written.  IBM Researcher E. F. Codd wrote “A Relational Model for Large Shared Data Banks” for Communications of the ACM magazine in June of that year, and it became the defining work on data layouts for decades.  Codd’s model would be refined over the next 40 years, but what he proposed evolved into a generic toolset for structuring and manipulating data that was used for everything from managing bank assets to storing food recipes.

This general-purpose data analysis software also ran exceptionally well on general-purpose computing hardware.  The two got along great, actually, since all you really needed was a disk big enough to handle the structured data and enough CPU and RAM to perform the queries.  In fact, some hardware manufacturers such as Hewlett-Packard would give away database software when you purchased the hardware to run it on.  For the Enterprise especially, the Relational Database was the killer app of the data center hardware business.

At this point, everybody was happily solving problems and making money.  Then something happened that changed everything and completely disrupted this ecosystem forever.  It was called Google.

Then Google Happened

During the Nixon Administration, copying the entire Internet was not a difficult problem given its diminutive size.  But this was not so by the late 1990s, when the first wave of search engines like Lycos and Alta Vista had supposedly solved the problem of finding information online.  Shortly thereafter, Google happened and disrupted not only the online search industry but also data processing.

It turns out that if you can keep a copy of the modern Internet at all times, you can do some amazing things in determining relevance and, therefore, return better search results.  However, you can’t use a traditional RDB to tackle that problem for several reasons.  First of all, to solve this problem you need to store a lot of data.  So much so, it becomes impractical to rely solely on vertical scaling by adding more disk/CPU/Ram to a system and a RDB does not scale horizontally very well.  Adding more machines to a RDB does not improve its execution or ability to store more data.  That disk/CPU/RAM marriage has been around for 40 years and it’s not easy to break apart.

Further, as the size of the data set in an RDB gets larger the query speed generally degrades.  For a financial services company querying trends on stock prices that may be acceptable, since that influences the time of a handful of analysts who can do something else while that processing is going on.  But for an Internet search company trying to deliver sub 3-second responses to millions of customers simultaneously that just won’t fly.

Finally, given the large data volumes and the query speed required for Internet searches, the necessity for data redundancy is implied since the data is needed at all times.  As such, the simple master-slave model employed by most RDB deployments over the last four decades is a lot less bullet proof than what is needed when you are trying to constantly copy the entire Internet.  One big mirror simply won’t cut it.

Distributed File Systems and Map/Reduce Change Everything

If Codd’s seminal RDB paper had grandchildren, they would be a pair of papers released by Google that described how they conquered their data problem.  Published in 2003, “The Google File System” by Sanjay Ghermawat, Howard Gobioff, and Shun-tak Leung described how a new way of storing data across many, many different machines provided a mechanism for dealing with huge volumes in a much more economical way than the traditional RDB. 

The follow-up paper from 2004 entitled, “MapReduce: Simplified Data Processing on Large Clusters” by Ghermawat and Jeffrey Dean further revealed that Google performs queries across its large, distributed data set by breaking up the problem into smaller parts, sending those smaller parts to nodes out on the distributed system (the Map step), and finally assembling the results of the smaller solution (the Reduce step) into a whole.

Together, these two papers created a data processing renaissance.  While RDBs still have their place, they are no longer the single solution to all problems in the data processing world.  For problems involving large data volumes in particular, solutions derived from these two papers have emerged over the past decade to give developers and architects far more choice than they had in the RDB exclusive world that existed previously.

Hadoop Democratizes Big Data; Now Where Are You Going to Run It?

The next logical step in this evolution in an era of Open Source programming was for somebody to take the theories laid out in these Google papers and transform them into a reality that everyone could use.  This is precisely what Doug Cutting and Michael J. Cafarella did, and they called the result Hadoop.  With Hadoop, anyone now had the software to tackle huge data volumes and perform sophisticated queries.  What not everybody could afford, however, was the hardware to run it on.

Enter cloud computing, specifically Infrastructure as a Service (IaaS).  Primarily invented by Amazon with its Amazon Web Services offering, anyone could lease the 100s if not 1000s of compute nodes necessary to run big Hadoop jobs instead of purchasing the physical machines necessary for the job.  Combine that idea with orchestration software from folks like OpsCode or Puppet Labs and you could automate the creation of your virtualized hardware, the installation and configuration of the Hadoop software, and the loading of large data volumes to minimize the costs of performing these queries.

Again, everybody is happily solving problems and making money.  But we aren’t done.  There’s another step to this evolution, and it’s happening now.

InfiniBand: Making Hadoop Faster and More Economical

Processing Hadoop and other Big Data queries on IaaS produces results, but slowly.  This combination is praised for the answers it can find but at the cost of reduced speed.  We saw a data processing revolution sparked by different software approaches than those pioneered in the 1970’s.   Better-performing Hadoop clusters, with all the network traffic they produce in their Map and Reduce steps, can be found by taking a similar approach with a different network infrastructure.

Ethernet, the most widely used network infrastructure technology today, has followed a path similar to that of RDBs.  Invented in 1980, Ethernet uses a hierarchal structure of subnets to string computers together on a network.  It is so common that, like RDBs 10 years ago, most people don’t think they have a choice of something different.

The performance problem with Ethernet comes in its basic structure.  With hierarchies of subnets connected by routers, network packets have exactly one path they can traverse between any two points on the network.  You can increase the size of the pipe between those two points slightly, but fundamentally you still just have the one path.

Born in the supercomputing community during the 21st Century, InfiniBand instead uses a grid system which enables multiple paths for network packets to traverse between two points.  Smart routing that knows what part of the grid is currently busy, akin to automobile traffic reporting found on smart phone map apps, keeps the flow of traffic throughout the system working optimally.  A typical Ethernet-based network runs at 1 Gigabit per second (Gb/s), and a fast one runs at 10 Gb/s.  A dual-channel InfiniBand network runs at 80 Gb/s, making it a great compliment to Map/Reduce steps on a Hadoop cluster.

We’ve seen how a software revolution getting us past the exclusive use of RDBs has enabled data mining that was previously unimaginable.  Open Source and cloud computing have made Big Data approachable to a wider audience.  Better speed, resulting in shorter query times and time reductions needed in leasing IaaS space, is achievable using public cloud providers offering InfiniBand.  This is the next step in the data processing revolution and the next generation of Cloud Computing services (also known as Cloud Computing 2.0) bring InfiniBand to the public cloud.  ProfitBricks is the first provider to offer supercomputing like performance to the public cloud at an affordable price.  Data is becoming democratized, and now High Performance Computing is as well.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data West Brings Technology Leaders to SDSC

December 6, 2018

Data and technology enthusiasts from around the world descended upon the San Diego Supercomputing Center (SDSC) for the third annual Data West conference, which is taking place this week on the campus of the University o Read more…

By Alex Woodie

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are Read more…

By James Reinders

What’s New in HPC Research: Automatic Energy Efficiency, DNA Data Analysis, Post-Exascale & More

December 6, 2018

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Five Steps to Building a Data Strategy for AI

Our data-centric world is driving many organizations to apply advanced analytics that use artificial intelligence (AI). AI provides intelligent answers to challenging business questions. AI also enables highly personalized user experiences, built when data scientists and analysts learn new information from data that would otherwise go undetected using traditional analytics methods. Read more…

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This