Why Big Data Needs InfiniBand to Continue Evolving

By Nicole Hemsoth

April 1, 2013

Increasingly, it’s a Big Data world we live in.  Just in case you’ve been living under a rock and need proof of that, a major retailer can use an unimaginable number of data points to predict the pregnancy of a teenage girl outside Minneapolis before she gets a chance to tell her family.  That’s just one example, but there are countless others that point to the idea that mining huge data volumes can uncover gold nuggets of actionable proportions (although sometimes they freak people out – for example that girl’s father). 

We’re still at the dawn of this Big Data era and as the market is showing, one-size-fits-all data processing is no longer adequate.  To take the next step in this evolution, specialized Big Data software can improve not only by using cloud computing, but also by utilizing specialized networking infrastructure, InfiniBand, from the supercomputing community.  Before understanding why, though, you need to understand the history of how we got to this Big Data world in the first place.

How Did We Get Here? The Birth of the Relational Database

1970 isn’t just the year of the Unix Epoch, it’s also the year that the granddaddy of all Relational Database (RDB) papers was written.  IBM Researcher E. F. Codd wrote “A Relational Model for Large Shared Data Banks” for Communications of the ACM magazine in June of that year, and it became the defining work on data layouts for decades.  Codd’s model would be refined over the next 40 years, but what he proposed evolved into a generic toolset for structuring and manipulating data that was used for everything from managing bank assets to storing food recipes.

This general-purpose data analysis software also ran exceptionally well on general-purpose computing hardware.  The two got along great, actually, since all you really needed was a disk big enough to handle the structured data and enough CPU and RAM to perform the queries.  In fact, some hardware manufacturers such as Hewlett-Packard would give away database software when you purchased the hardware to run it on.  For the Enterprise especially, the Relational Database was the killer app of the data center hardware business.

At this point, everybody was happily solving problems and making money.  Then something happened that changed everything and completely disrupted this ecosystem forever.  It was called Google.

Then Google Happened

During the Nixon Administration, copying the entire Internet was not a difficult problem given its diminutive size.  But this was not so by the late 1990s, when the first wave of search engines like Lycos and Alta Vista had supposedly solved the problem of finding information online.  Shortly thereafter, Google happened and disrupted not only the online search industry but also data processing.

It turns out that if you can keep a copy of the modern Internet at all times, you can do some amazing things in determining relevance and, therefore, return better search results.  However, you can’t use a traditional RDB to tackle that problem for several reasons.  First of all, to solve this problem you need to store a lot of data.  So much so, it becomes impractical to rely solely on vertical scaling by adding more disk/CPU/Ram to a system and a RDB does not scale horizontally very well.  Adding more machines to a RDB does not improve its execution or ability to store more data.  That disk/CPU/RAM marriage has been around for 40 years and it’s not easy to break apart.

Further, as the size of the data set in an RDB gets larger the query speed generally degrades.  For a financial services company querying trends on stock prices that may be acceptable, since that influences the time of a handful of analysts who can do something else while that processing is going on.  But for an Internet search company trying to deliver sub 3-second responses to millions of customers simultaneously that just won’t fly.

Finally, given the large data volumes and the query speed required for Internet searches, the necessity for data redundancy is implied since the data is needed at all times.  As such, the simple master-slave model employed by most RDB deployments over the last four decades is a lot less bullet proof than what is needed when you are trying to constantly copy the entire Internet.  One big mirror simply won’t cut it.

Distributed File Systems and Map/Reduce Change Everything

If Codd’s seminal RDB paper had grandchildren, they would be a pair of papers released by Google that described how they conquered their data problem.  Published in 2003, “The Google File System” by Sanjay Ghermawat, Howard Gobioff, and Shun-tak Leung described how a new way of storing data across many, many different machines provided a mechanism for dealing with huge volumes in a much more economical way than the traditional RDB. 

The follow-up paper from 2004 entitled, “MapReduce: Simplified Data Processing on Large Clusters” by Ghermawat and Jeffrey Dean further revealed that Google performs queries across its large, distributed data set by breaking up the problem into smaller parts, sending those smaller parts to nodes out on the distributed system (the Map step), and finally assembling the results of the smaller solution (the Reduce step) into a whole.

Together, these two papers created a data processing renaissance.  While RDBs still have their place, they are no longer the single solution to all problems in the data processing world.  For problems involving large data volumes in particular, solutions derived from these two papers have emerged over the past decade to give developers and architects far more choice than they had in the RDB exclusive world that existed previously.

Hadoop Democratizes Big Data; Now Where Are You Going to Run It?

The next logical step in this evolution in an era of Open Source programming was for somebody to take the theories laid out in these Google papers and transform them into a reality that everyone could use.  This is precisely what Doug Cutting and Michael J. Cafarella did, and they called the result Hadoop.  With Hadoop, anyone now had the software to tackle huge data volumes and perform sophisticated queries.  What not everybody could afford, however, was the hardware to run it on.

Enter cloud computing, specifically Infrastructure as a Service (IaaS).  Primarily invented by Amazon with its Amazon Web Services offering, anyone could lease the 100s if not 1000s of compute nodes necessary to run big Hadoop jobs instead of purchasing the physical machines necessary for the job.  Combine that idea with orchestration software from folks like OpsCode or Puppet Labs and you could automate the creation of your virtualized hardware, the installation and configuration of the Hadoop software, and the loading of large data volumes to minimize the costs of performing these queries.

Again, everybody is happily solving problems and making money.  But we aren’t done.  There’s another step to this evolution, and it’s happening now.

InfiniBand: Making Hadoop Faster and More Economical

Processing Hadoop and other Big Data queries on IaaS produces results, but slowly.  This combination is praised for the answers it can find but at the cost of reduced speed.  We saw a data processing revolution sparked by different software approaches than those pioneered in the 1970’s.   Better-performing Hadoop clusters, with all the network traffic they produce in their Map and Reduce steps, can be found by taking a similar approach with a different network infrastructure.

Ethernet, the most widely used network infrastructure technology today, has followed a path similar to that of RDBs.  Invented in 1980, Ethernet uses a hierarchal structure of subnets to string computers together on a network.  It is so common that, like RDBs 10 years ago, most people don’t think they have a choice of something different.

The performance problem with Ethernet comes in its basic structure.  With hierarchies of subnets connected by routers, network packets have exactly one path they can traverse between any two points on the network.  You can increase the size of the pipe between those two points slightly, but fundamentally you still just have the one path.

Born in the supercomputing community during the 21st Century, InfiniBand instead uses a grid system which enables multiple paths for network packets to traverse between two points.  Smart routing that knows what part of the grid is currently busy, akin to automobile traffic reporting found on smart phone map apps, keeps the flow of traffic throughout the system working optimally.  A typical Ethernet-based network runs at 1 Gigabit per second (Gb/s), and a fast one runs at 10 Gb/s.  A dual-channel InfiniBand network runs at 80 Gb/s, making it a great compliment to Map/Reduce steps on a Hadoop cluster.

We’ve seen how a software revolution getting us past the exclusive use of RDBs has enabled data mining that was previously unimaginable.  Open Source and cloud computing have made Big Data approachable to a wider audience.  Better speed, resulting in shorter query times and time reductions needed in leasing IaaS space, is achievable using public cloud providers offering InfiniBand.  This is the next step in the data processing revolution and the next generation of Cloud Computing services (also known as Cloud Computing 2.0) bring InfiniBand to the public cloud.  ProfitBricks is the first provider to offer supercomputing like performance to the public cloud at an affordable price.  Data is becoming democratized, and now High Performance Computing is as well.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This