Why Big Data Needs InfiniBand to Continue Evolving

By Nicole Hemsoth

April 1, 2013

Increasingly, it’s a Big Data world we live in.  Just in case you’ve been living under a rock and need proof of that, a major retailer can use an unimaginable number of data points to predict the pregnancy of a teenage girl outside Minneapolis before she gets a chance to tell her family.  That’s just one example, but there are countless others that point to the idea that mining huge data volumes can uncover gold nuggets of actionable proportions (although sometimes they freak people out – for example that girl’s father). 

We’re still at the dawn of this Big Data era and as the market is showing, one-size-fits-all data processing is no longer adequate.  To take the next step in this evolution, specialized Big Data software can improve not only by using cloud computing, but also by utilizing specialized networking infrastructure, InfiniBand, from the supercomputing community.  Before understanding why, though, you need to understand the history of how we got to this Big Data world in the first place.

How Did We Get Here? The Birth of the Relational Database

1970 isn’t just the year of the Unix Epoch, it’s also the year that the granddaddy of all Relational Database (RDB) papers was written.  IBM Researcher E. F. Codd wrote “A Relational Model for Large Shared Data Banks” for Communications of the ACM magazine in June of that year, and it became the defining work on data layouts for decades.  Codd’s model would be refined over the next 40 years, but what he proposed evolved into a generic toolset for structuring and manipulating data that was used for everything from managing bank assets to storing food recipes.

This general-purpose data analysis software also ran exceptionally well on general-purpose computing hardware.  The two got along great, actually, since all you really needed was a disk big enough to handle the structured data and enough CPU and RAM to perform the queries.  In fact, some hardware manufacturers such as Hewlett-Packard would give away database software when you purchased the hardware to run it on.  For the Enterprise especially, the Relational Database was the killer app of the data center hardware business.

At this point, everybody was happily solving problems and making money.  Then something happened that changed everything and completely disrupted this ecosystem forever.  It was called Google.

Then Google Happened

During the Nixon Administration, copying the entire Internet was not a difficult problem given its diminutive size.  But this was not so by the late 1990s, when the first wave of search engines like Lycos and Alta Vista had supposedly solved the problem of finding information online.  Shortly thereafter, Google happened and disrupted not only the online search industry but also data processing.

It turns out that if you can keep a copy of the modern Internet at all times, you can do some amazing things in determining relevance and, therefore, return better search results.  However, you can’t use a traditional RDB to tackle that problem for several reasons.  First of all, to solve this problem you need to store a lot of data.  So much so, it becomes impractical to rely solely on vertical scaling by adding more disk/CPU/Ram to a system and a RDB does not scale horizontally very well.  Adding more machines to a RDB does not improve its execution or ability to store more data.  That disk/CPU/RAM marriage has been around for 40 years and it’s not easy to break apart.

Further, as the size of the data set in an RDB gets larger the query speed generally degrades.  For a financial services company querying trends on stock prices that may be acceptable, since that influences the time of a handful of analysts who can do something else while that processing is going on.  But for an Internet search company trying to deliver sub 3-second responses to millions of customers simultaneously that just won’t fly.

Finally, given the large data volumes and the query speed required for Internet searches, the necessity for data redundancy is implied since the data is needed at all times.  As such, the simple master-slave model employed by most RDB deployments over the last four decades is a lot less bullet proof than what is needed when you are trying to constantly copy the entire Internet.  One big mirror simply won’t cut it.

Distributed File Systems and Map/Reduce Change Everything

If Codd’s seminal RDB paper had grandchildren, they would be a pair of papers released by Google that described how they conquered their data problem.  Published in 2003, “The Google File System” by Sanjay Ghermawat, Howard Gobioff, and Shun-tak Leung described how a new way of storing data across many, many different machines provided a mechanism for dealing with huge volumes in a much more economical way than the traditional RDB. 

The follow-up paper from 2004 entitled, “MapReduce: Simplified Data Processing on Large Clusters” by Ghermawat and Jeffrey Dean further revealed that Google performs queries across its large, distributed data set by breaking up the problem into smaller parts, sending those smaller parts to nodes out on the distributed system (the Map step), and finally assembling the results of the smaller solution (the Reduce step) into a whole.

Together, these two papers created a data processing renaissance.  While RDBs still have their place, they are no longer the single solution to all problems in the data processing world.  For problems involving large data volumes in particular, solutions derived from these two papers have emerged over the past decade to give developers and architects far more choice than they had in the RDB exclusive world that existed previously.

Hadoop Democratizes Big Data; Now Where Are You Going to Run It?

The next logical step in this evolution in an era of Open Source programming was for somebody to take the theories laid out in these Google papers and transform them into a reality that everyone could use.  This is precisely what Doug Cutting and Michael J. Cafarella did, and they called the result Hadoop.  With Hadoop, anyone now had the software to tackle huge data volumes and perform sophisticated queries.  What not everybody could afford, however, was the hardware to run it on.

Enter cloud computing, specifically Infrastructure as a Service (IaaS).  Primarily invented by Amazon with its Amazon Web Services offering, anyone could lease the 100s if not 1000s of compute nodes necessary to run big Hadoop jobs instead of purchasing the physical machines necessary for the job.  Combine that idea with orchestration software from folks like OpsCode or Puppet Labs and you could automate the creation of your virtualized hardware, the installation and configuration of the Hadoop software, and the loading of large data volumes to minimize the costs of performing these queries.

Again, everybody is happily solving problems and making money.  But we aren’t done.  There’s another step to this evolution, and it’s happening now.

InfiniBand: Making Hadoop Faster and More Economical

Processing Hadoop and other Big Data queries on IaaS produces results, but slowly.  This combination is praised for the answers it can find but at the cost of reduced speed.  We saw a data processing revolution sparked by different software approaches than those pioneered in the 1970’s.   Better-performing Hadoop clusters, with all the network traffic they produce in their Map and Reduce steps, can be found by taking a similar approach with a different network infrastructure.

Ethernet, the most widely used network infrastructure technology today, has followed a path similar to that of RDBs.  Invented in 1980, Ethernet uses a hierarchal structure of subnets to string computers together on a network.  It is so common that, like RDBs 10 years ago, most people don’t think they have a choice of something different.

The performance problem with Ethernet comes in its basic structure.  With hierarchies of subnets connected by routers, network packets have exactly one path they can traverse between any two points on the network.  You can increase the size of the pipe between those two points slightly, but fundamentally you still just have the one path.

Born in the supercomputing community during the 21st Century, InfiniBand instead uses a grid system which enables multiple paths for network packets to traverse between two points.  Smart routing that knows what part of the grid is currently busy, akin to automobile traffic reporting found on smart phone map apps, keeps the flow of traffic throughout the system working optimally.  A typical Ethernet-based network runs at 1 Gigabit per second (Gb/s), and a fast one runs at 10 Gb/s.  A dual-channel InfiniBand network runs at 80 Gb/s, making it a great compliment to Map/Reduce steps on a Hadoop cluster.

We’ve seen how a software revolution getting us past the exclusive use of RDBs has enabled data mining that was previously unimaginable.  Open Source and cloud computing have made Big Data approachable to a wider audience.  Better speed, resulting in shorter query times and time reductions needed in leasing IaaS space, is achievable using public cloud providers offering InfiniBand.  This is the next step in the data processing revolution and the next generation of Cloud Computing services (also known as Cloud Computing 2.0) bring InfiniBand to the public cloud.  ProfitBricks is the first provider to offer supercomputing like performance to the public cloud at an affordable price.  Data is becoming democratized, and now High Performance Computing is as well.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This