Why Big Data Needs InfiniBand to Continue Evolving

By Nicole Hemsoth

April 1, 2013

Increasingly, it’s a Big Data world we live in.  Just in case you’ve been living under a rock and need proof of that, a major retailer can use an unimaginable number of data points to predict the pregnancy of a teenage girl outside Minneapolis before she gets a chance to tell her family.  That’s just one example, but there are countless others that point to the idea that mining huge data volumes can uncover gold nuggets of actionable proportions (although sometimes they freak people out – for example that girl’s father). 

We’re still at the dawn of this Big Data era and as the market is showing, one-size-fits-all data processing is no longer adequate.  To take the next step in this evolution, specialized Big Data software can improve not only by using cloud computing, but also by utilizing specialized networking infrastructure, InfiniBand, from the supercomputing community.  Before understanding why, though, you need to understand the history of how we got to this Big Data world in the first place.

How Did We Get Here? The Birth of the Relational Database

1970 isn’t just the year of the Unix Epoch, it’s also the year that the granddaddy of all Relational Database (RDB) papers was written.  IBM Researcher E. F. Codd wrote “A Relational Model for Large Shared Data Banks” for Communications of the ACM magazine in June of that year, and it became the defining work on data layouts for decades.  Codd’s model would be refined over the next 40 years, but what he proposed evolved into a generic toolset for structuring and manipulating data that was used for everything from managing bank assets to storing food recipes.

This general-purpose data analysis software also ran exceptionally well on general-purpose computing hardware.  The two got along great, actually, since all you really needed was a disk big enough to handle the structured data and enough CPU and RAM to perform the queries.  In fact, some hardware manufacturers such as Hewlett-Packard would give away database software when you purchased the hardware to run it on.  For the Enterprise especially, the Relational Database was the killer app of the data center hardware business.

At this point, everybody was happily solving problems and making money.  Then something happened that changed everything and completely disrupted this ecosystem forever.  It was called Google.

Then Google Happened

During the Nixon Administration, copying the entire Internet was not a difficult problem given its diminutive size.  But this was not so by the late 1990s, when the first wave of search engines like Lycos and Alta Vista had supposedly solved the problem of finding information online.  Shortly thereafter, Google happened and disrupted not only the online search industry but also data processing.

It turns out that if you can keep a copy of the modern Internet at all times, you can do some amazing things in determining relevance and, therefore, return better search results.  However, you can’t use a traditional RDB to tackle that problem for several reasons.  First of all, to solve this problem you need to store a lot of data.  So much so, it becomes impractical to rely solely on vertical scaling by adding more disk/CPU/Ram to a system and a RDB does not scale horizontally very well.  Adding more machines to a RDB does not improve its execution or ability to store more data.  That disk/CPU/RAM marriage has been around for 40 years and it’s not easy to break apart.

Further, as the size of the data set in an RDB gets larger the query speed generally degrades.  For a financial services company querying trends on stock prices that may be acceptable, since that influences the time of a handful of analysts who can do something else while that processing is going on.  But for an Internet search company trying to deliver sub 3-second responses to millions of customers simultaneously that just won’t fly.

Finally, given the large data volumes and the query speed required for Internet searches, the necessity for data redundancy is implied since the data is needed at all times.  As such, the simple master-slave model employed by most RDB deployments over the last four decades is a lot less bullet proof than what is needed when you are trying to constantly copy the entire Internet.  One big mirror simply won’t cut it.

Distributed File Systems and Map/Reduce Change Everything

If Codd’s seminal RDB paper had grandchildren, they would be a pair of papers released by Google that described how they conquered their data problem.  Published in 2003, “The Google File System” by Sanjay Ghermawat, Howard Gobioff, and Shun-tak Leung described how a new way of storing data across many, many different machines provided a mechanism for dealing with huge volumes in a much more economical way than the traditional RDB. 

The follow-up paper from 2004 entitled, “MapReduce: Simplified Data Processing on Large Clusters” by Ghermawat and Jeffrey Dean further revealed that Google performs queries across its large, distributed data set by breaking up the problem into smaller parts, sending those smaller parts to nodes out on the distributed system (the Map step), and finally assembling the results of the smaller solution (the Reduce step) into a whole.

Together, these two papers created a data processing renaissance.  While RDBs still have their place, they are no longer the single solution to all problems in the data processing world.  For problems involving large data volumes in particular, solutions derived from these two papers have emerged over the past decade to give developers and architects far more choice than they had in the RDB exclusive world that existed previously.

Hadoop Democratizes Big Data; Now Where Are You Going to Run It?

The next logical step in this evolution in an era of Open Source programming was for somebody to take the theories laid out in these Google papers and transform them into a reality that everyone could use.  This is precisely what Doug Cutting and Michael J. Cafarella did, and they called the result Hadoop.  With Hadoop, anyone now had the software to tackle huge data volumes and perform sophisticated queries.  What not everybody could afford, however, was the hardware to run it on.

Enter cloud computing, specifically Infrastructure as a Service (IaaS).  Primarily invented by Amazon with its Amazon Web Services offering, anyone could lease the 100s if not 1000s of compute nodes necessary to run big Hadoop jobs instead of purchasing the physical machines necessary for the job.  Combine that idea with orchestration software from folks like OpsCode or Puppet Labs and you could automate the creation of your virtualized hardware, the installation and configuration of the Hadoop software, and the loading of large data volumes to minimize the costs of performing these queries.

Again, everybody is happily solving problems and making money.  But we aren’t done.  There’s another step to this evolution, and it’s happening now.

InfiniBand: Making Hadoop Faster and More Economical

Processing Hadoop and other Big Data queries on IaaS produces results, but slowly.  This combination is praised for the answers it can find but at the cost of reduced speed.  We saw a data processing revolution sparked by different software approaches than those pioneered in the 1970’s.   Better-performing Hadoop clusters, with all the network traffic they produce in their Map and Reduce steps, can be found by taking a similar approach with a different network infrastructure.

Ethernet, the most widely used network infrastructure technology today, has followed a path similar to that of RDBs.  Invented in 1980, Ethernet uses a hierarchal structure of subnets to string computers together on a network.  It is so common that, like RDBs 10 years ago, most people don’t think they have a choice of something different.

The performance problem with Ethernet comes in its basic structure.  With hierarchies of subnets connected by routers, network packets have exactly one path they can traverse between any two points on the network.  You can increase the size of the pipe between those two points slightly, but fundamentally you still just have the one path.

Born in the supercomputing community during the 21st Century, InfiniBand instead uses a grid system which enables multiple paths for network packets to traverse between two points.  Smart routing that knows what part of the grid is currently busy, akin to automobile traffic reporting found on smart phone map apps, keeps the flow of traffic throughout the system working optimally.  A typical Ethernet-based network runs at 1 Gigabit per second (Gb/s), and a fast one runs at 10 Gb/s.  A dual-channel InfiniBand network runs at 80 Gb/s, making it a great compliment to Map/Reduce steps on a Hadoop cluster.

We’ve seen how a software revolution getting us past the exclusive use of RDBs has enabled data mining that was previously unimaginable.  Open Source and cloud computing have made Big Data approachable to a wider audience.  Better speed, resulting in shorter query times and time reductions needed in leasing IaaS space, is achievable using public cloud providers offering InfiniBand.  This is the next step in the data processing revolution and the next generation of Cloud Computing services (also known as Cloud Computing 2.0) bring InfiniBand to the public cloud.  ProfitBricks is the first provider to offer supercomputing like performance to the public cloud at an affordable price.  Data is becoming democratized, and now High Performance Computing is as well.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Shares Recipe to Accelerate AI Cloud Adoption

May 29, 2017

In March, Nvidia revealed blueprints for a new open source Tesla GPU-based accelerator – HGX-1 – developed for clouds with Microsoft under its Project Olym Read more…

By Tiffany Trader

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Nvidia Shares Recipe to Accelerate AI Cloud Adoption

May 29, 2017

In March, Nvidia revealed blueprints for a new open source Tesla GPU-based accelerator – HGX-1 – developed for clouds with Microsoft under its Project Olym Read more…

By Tiffany Trader

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This